
Full list of CDE vendors
(+ feature comparison table)

WHITEPAPER

Table of Contents

Executive Summary �� 3

Disclaimer - who am I and why am I writing this? �� 4

What are CDEs? �� 5
Not all CDEs run in the Cloud �� 6
How does it work? ��� 6
Very brief history of CDEs �� 8
IDEs and CDEs �� 9
CDE configuration standards �� 10

Dev Container �� 10
Devfiles ��� 10
Nix package manager ��� 11

Main differences between CDE products ��� 12
USP �� 12
Customizability: What can run on the CDE ��� 12
Containers vs� VMs �� 13
Configuration �� 13
Compatible IDEs ��� 15
CLI ��� 16
Source Code Security ��� 16
SaaS and on-prem �� 18
Pricing model �� 18
Approx. price / dev / month ��� 18
Initial release �� 19
Vendor HQ ��� 20
Comment �� 20
Excluded: version control ��� 20

Feature comparison table ��� 21

List of vendors�� 22
Amazon CodeCatalyst Dev Environments �� 22
Cloudomation DevStack �� 23
Coder ��� 25
Codesandbox �� 26
CPS1 �� 27
Daytona ��� 27
DevPod by Loft Labs �� 28
DevZero ��� 29
Eclipse Che ��� 31
GCPWorkstations ��� 31
Github Codespaces �� 32
Gitlab Workspaces ��� 32
Gitpod �� 33
IDX by Google ��� 34
JetBrains CodeCanvas ��� 35
Microsoft Dev Box �� 36
Okteto �� 37
Red Hat OpenShift Dev Spaces ��� 37
Strong Network ��� 38

Discontinued CDE products �� 40
Hocus �� 40
Koding ��� 40
Nimbus �� 40

Honorary mentions ��� 41
Stackblitz �� 41
JetBrains Space�� 41
Devbox by Jetpack ��� 42

Where CDEs are valuable - and where they are not �� 43

How to choose a CDE product ��� 45

Summary �� 46

Cloudomation - Cloud Development Environments 3

Executive Summary
Cloud Development Environments aim to solve the following problems faced by
developers:

• A lot of time is invested in maintaining development environments
• A lot of knowledge is required to set up and maintain development environ-

ments
• A lot of computing power is required to build, test and run the software that

developers work on

CDEs propose to solve this by providing development environments which are:

• Simple to set up and use - reducing the need for both time and knowledge
required for set up and maintenance of development environments.

• Run on powerful servers - reducing the load on local workstations.

The CDE market is immature, with many new products having been announced
in the last two years (2023, 2024). Even vendors who have been on the market
for a long time are rebuilding their products and/or have only released stable
versions recently�

This whitepaper gives an overview of all CDE products currently (as of August
2024) on the market and provides insight into functionality and comparability of
products�

Cloudomation - Cloud Development Environments 4

Disclaimer - who am I and why am I writing
this?
As mentioned before, with this whitepaper, my goal is to provide an overview of
all CDE tools that are currently on the market, as of August 2024.

My name is Margot Mückstein and I am the CEO of a CDE vendor -
Cloudomation. I also include a description of our product - Cloudomation
DevStack - in this whitepaper�

However, this whitepaper is not intended as a promotional piece for our product,
and I neither disparage other CDE products nor do I limit my comparison to fea-
tures where our product can shine�

The research I present here was done to get a deep understanding of the tools
currently available to inform our product development. I want to ensure that our
product provides both what users need, and what isn’t already available on the
market. That requires honesty, which is the basis of this whitepaper.

I will express some personal opinions in this whitepaper. Whenever I do so, I will
make it clear through the use of pronouns and the active voice (e.g. „in my opi-
nion“, „I think“, „it seems to me“ etc.).

I welcome your thoughts and comments on this whitepaper.

Reach out to me on LinkedIn or by e-mail: margot@cloudomation.com�

https://cloudomation.com/en/cloudomation-devstack/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devstack
https://cloudomation.com/en/cloudomation-devstack/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devstack
https://www.linkedin.com/in/margot-m%C3%BCckstein/
mailto:margot%40cloudomation.com?subject=CDE%20Vendor%20List%20Question

Cloudomation - Cloud Development Environments 5

What are CDEs?
CDE is short for Cloud Development Environment. It refers to products that allow
developers to do their work in a cloud environment that provides all the tools a
developer needs. The CDE provides an environment with compute resources,
operating system, language frameworks, developer tools, and all dependencies
required to write code, build, test and run the application a developer works on.

A CDE platform provides a way to customise CDE configurations, and provides
CDE management functionality to deploy, start, stop and delete CDEs.

While this is the basic idea, CDE products vary a lot in what exactly they provide.
There are large differences in:

• how much of a developer’s workload is moved to the cloud,
• which tools are available in a CDE,
• how customisable it is, what architecture and underlying technologies are

used�

CDE is short for Cloud Development Environment.
It refers to products that allow developers to do
their work in a cloud environment that provides
all the tools a developer needs�

Cloudomation - Cloud Development Environments 6

Not all CDEs run in the Cloud

CDE is short for Cloud Development Environment. This implies that the CDE runs
in the cloud� While many CDE vendors offer their products as SaaS, this is not
true for all of them.

Several offer the option to host the CDE platform within customer’s infrastructu-
re. Technically, this would be RDEs - remote development environments. I menti-
on this to make clear that RDEs and CDEs are technologically the same product,
with differences only in deployment options.

How does it work?

The most common CDE setup looks like this:

• CDE is described in a config file which is kept in a source code repository.
This config file can be customised to describe which dependencies should be
available in the CDE�

 ◦ There are two established standards to describe CDEs:

 ◦ Both assume that the CDE is a single container and reference Docker
images, Docker files or Docker-compose files, which describe a contai-
ner base image. On top of this, devfile and devcontainer allow to specify
development-specific additional properties for the container, such as IDE
extensions or scripts that should be run after the container has started�

devile.yml devcontai-
ner�json

I wrote a blog post explaining the difference between
devfile and devcontainer and which additional features
they provide on top of docker-compose and dockerfiles:

https://cloudomation.com/en/cloudomation-blog/devfile-
devcontainer-vs-dockerfile-docker-compose/

https://cloudomation.com/en/cloudomation-blog/devfile-devcontainer-vs-dockerfile-docker-compose/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devfile_devcontainer
https://cloudomation.com/en/cloudomation-blog/devfile-devcontainer-vs-dockerfile-docker-compose/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devfile_devcontainer

Cloudomation - Cloud Development Environments 7

 ◦ Variants: Due to limitations of these standards, some vendors have deve-
loped their own configuration standards that are used to describe CDEs.
I wrote a blog post explaining the limits of devfile and devcontainer and
why some vendors use a proprietary configuration format despite the
existence of standards: https://cloudomation.com/en/cloudomation-
blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-develop-
ment-environments-cdes/

• One CDE is one container�
 ◦ Variants: While the majority of CDEs are containers, this is not true for all
of them. Cloudomation DevStack, for example, allows to deploy CDEs as
containers or to deploy directly to a CDE VM. Another common variant
are CDE platforms that deploy several containers next to each other, with
one container designated as the CDE container which contains the source
code and IDE backend, which is deployed alongside several application
containers�

• CDEs are consumed as SaaS.
 ◦ Variants: Some CDE platforms are available as self-hosted on-premise, or
as vendor-managed on-premise.

• Developers access CDEs via:
 ◦ an ssh-capable IDE which connects to IDE backend in the CDE and a brow-
ser portal where CDEs are started, stopped, removed etc.

 ◦ Variants: Many CDEs allow developers direct ssh access to the CDE.
Some CDEs provide a CLI to facilitate CDE access and management.

https://cloudomation.com/en/cloudomation-blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-development-environments-cdes/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=configuration_standards
https://cloudomation.com/en/cloudomation-blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-development-environments-cdes/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=configuration_standards
https://cloudomation.com/en/cloudomation-blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-development-environments-cdes/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=configuration_standards

Cloudomation - Cloud Development Environments 8

The CDE itself typically contains:

• The source code of the software that is being developed
• Tools required to work with the source code:

 ◦ Version control system
 ◦ Editor / IDE backend

• All dependencies needed to build, run and debug the software that is being
developed. There are large differences between CDE products regarding what
can be run on the CDE. The most powerful CDEs support running the entire
stack:

 ◦ Language runtimes and software development kits (SDKs) (for example:
Node.js or .NET Framework)

 ◦ Build scripts
 ◦ All components of the software itself: backend, frontend, database
 ◦ All other libraries and software packages that are required by the software
to run (for example: Docker)

 ◦ Debugger, linter (usually part of the IDE)
 ◦ Other tools as required (for example: log inspection tools)

• Anything else the developer fancies :)

On all the mentioned points, there are exceptions and variants.

Very brief history of CDEs

Startups started to tinker with the idea of CDEs in the early 2010s� Adoption has
been slow for the better part of a decade. In the early 2020s, there has been a
sudden explosion of new products, from established companies moving into the
CDE market as well as a host of new startups announcing CDE products in 2022,
2023 and 2024�

Why now?

In my personal opinion, a congruence of three factors determined the timing:

1. Scarcity of talent: More and more software developers are needed, which has
been fuelling a long-running trend towards increasing developer experience
and productivity�

2. Availability of technological prerequisites: Cheap and abundant cloud com-
puting, as well as ubiquity of high-quality internet connection, in addition to
maturation of CDE-specific technologies such as configuration standards
have made it technologically feasible to provide work environments to deve-
lopers remotely on scale.

Cloudomation - Cloud Development Environments 9

3. The Covid pandemic led to increased awareness of, openness for, and focus
on technologies that enable remote work. Both other factors are long-run-
ning trends- I think the Covid pandemic was the trigger event for the sudden
release of so many CDE products by many different vendors.

With so many new products on the market, it is becoming increasingly difficult to
understand the differences between them. In this whitepaper, I want to provide a
full list of available CDE products as of August 2024, and give an overview of the
differences between them.

Here you can read why we decided to develop a CDE
product now:
https://www.linkedin.com/pulse/why-cloudomation-went-
rde-margot-m%C3%BCckstein/

IDEs and CDEs

The main difference between “just” an IDE and a CDE is that the IDE allows only
to work with the source code, while a CDE also provides a runtime environment
to build and run the software that is being developed.

Since the CDE market is fairly young, this distinction is often not made. There are
IDE vendors labeling their products as CDEs and a lot of content out there that
confuses the two product categories. I wrote about this issue in our blog: The
difference between IDEs, local development environments and remote develop-
ment environments�

In reality however an IDE and a CDE provide different feature sets that make
them complementary. IDEs are typically used in combination with CDEs. CDEs
usually do not come with an IDE but offer compatibility or integration with a set
of IDEs�

Most CDEs can be used with ssh-capable IDEs� Ssh-capable IDEs enable a de-
veloper to only run a thin client locally, connect to the IDE backend via ssh, and
outsource all compute-intensive tasks like debugging to the ssh backend, which
runs on the CDE. The CDE is the runtime environment for the IDE backend as
well as the software that the developer works on�

https://www.linkedin.com/pulse/why-cloudomation-went-rde-margot-m%C3%BCckstein/
https://www.linkedin.com/pulse/why-cloudomation-went-rde-margot-m%C3%BCckstein/
https://cloudomation.com/en/cloudomation-blog/the-difference-between-ides-local-development-environments-and-remote-development-environments/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=ides_local_remote_difference
https://cloudomation.com/en/cloudomation-blog/the-difference-between-ides-local-development-environments-and-remote-development-environments/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=ides_local_remote_difference
https://cloudomation.com/en/cloudomation-blog/the-difference-between-ides-local-development-environments-and-remote-development-environments/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=ides_local_remote_difference

Cloudomation - Cloud Development Environments 10

CDE configuration standards

A CDE platform makes it possible to configure, customise and manage these re-
mote runtime environments, while the IDE provides functionality related to code
editing.

Dev Container

Dev Containers is a partially open source standard for describing containerised
development environments. The devcontainer project includes a small com-
mand-line tool (CLI) that allows developers to locally deploy a development
container based on a devcontainer.json config file. It doesn’t include tooling to
run dev containers in the cloud or to connect to Dev Containers remotely. That
is also not the goal of the Dev Containers project: it primarily seeks to define a
standard for defining containerised development environments.

More info: https://containers.dev/

Devfiles

Devfile is an open source standard for defining containerised development en-
vironments. Similar to the devcontainers standard, it is not itself a CDE solution
but a standard that many CDE products use for configuration of CDEs.

More info: https://devfile.io/
Docs: https://devfile.io/docs/

There are two established configuration standards for CDEs: devfile.yaml and
devcontainer.json. In addition, the nix package manager provides functionality
that is somewhat adjacent to CDE configuration by allowing to package depen-
dencies that make up a development environment�

I wrote about the difference between devfile, devcontainer, dockerfile and docker-
compose in our blog, and also explain a bit more about devfile and devcontainer

as configuration standards for CDEs�

https://containers.dev/
https://devfile.io/
https://devfile.io/docs/
https://cloudomation.com/en/cloudomation-blog/devfile-devcontainer-vs-dockerfile-docker-compose/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devfile_devcontainer
https://cloudomation.com/en/cloudomation-blog/devfile-devcontainer-vs-dockerfile-docker-compose/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devfile_devcontainer
https://cloudomation.com/en/cloudomation-blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-development-environments-cdes/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=configuration_standards
https://cloudomation.com/en/cloudomation-blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-development-environments-cdes/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=configuration_standards

Cloudomation - Cloud Development Environments 11

Nix package manager

Like the name suggests, Nix is a package manager and not a CDE tool. A pa-
ckage manager allows defining bundles of libraries into a package that contains
all dependencies for an application to run. As it happens, it is possible to define
development environments as such a package. Nix showcases this here: https://
nixos.org/#asciinema-demo-example_3� There are other resources out there
describing how Nix can be used to define and distribute development environ-
ments as Nix packages.

The USP of Nix is that it creates isolated packages. This means each package
contains everything it needs, and defining a package requires explicitly stating
every dependency in its required version. This makes it possible for different
packages to use different versions of the same library, removing dependency
conflicts.

Since dependency conflicts are often a big problem when working on different
versions of the software you develop (which might require different versions of
dependencies), this can be solved by creating Nix packages for your different
versions�

However, being a package manager, Nix doesn’t provide a platform to manage
CDEs, or infrastructure where they can be run.

More info: https://nixos.org/
Docs: https://nix.dev/

https://nixos.org/#asciinema-demo-example_3
https://nixos.org/#asciinema-demo-example_3
https://nixos.org/
https://nix.dev/

Cloudomation - Cloud Development Environments 12

Main differences between CDE products
Below, I describe the categories I use in the feature comparison table further
down.

USP

Where discernible, I point out the USP(s) of CDE products as presented on their
websites�

Customizability: What can run on the CDE

I like to group the CDE landscape into three broad buckets which can be placed
along an axis of increasing customizability and “power” of the CDE products.
This refers mostly to which software can run in a CDE, and how much the deploy-
ment logic of the CDE and the software that runs on it can be customised.

(A) Highly opinionated: Only one specific type of software is supported. The CDE
deployment is largely hidden from the user. The user can interactively customise
their CDE after deployment, but has no or only limited options to customize the
CDE template, often via a graphical user interface. Examples are CDEs for Win-
dows Desktop Software, or that support exclusively node.js projects.
(B) Intermediate: These CDEs have a fixed deployment model that the user can-
not customise, but allow flexible customisation of the software that runs within
the CDE. Since this is the largest group of CDE vendors, I added three sub cate-
gories which I explain in the chapter below: containers vs. VMs

 ◦ B1: Single container
 ◦ B2: Multi-container (without Kubernetes, containers running directly in
Docker)

 ◦ B3: Kubernetes
(C) Agnostic: (Almost) any type of software is supported. This includes Docker-
only setups for multi-container applications, as well as cluster-based, single-con-
tainer, single VM or multi-VM deployments, or serverless applications, as well as
hybrid setups where e.g. some services are shared between CDEs, while others
are unique to each CDE. Users have full control over the deployment logic and
can customize fully what constitutes a CDE. Typically, users have access to in-
frastructure or deployment automation software where they can fully customise
templates, or create their own CDE deployment logic.

Categories for the
feature comparison
table

Cloudomation - Cloud Development Environments 13

Containers vs� VMs

In the previous version of this whitepaper, one of the distinctions I made bet-
ween CDE products was whether they are deployed as VMs or containers� I ar-
gued that restricting developers to a single container as their work environment
was limiting, making it impossible to deploy several containers in their CDE.

I removed this distinction, because the majority of container-based CDEs use
technologies like Sysbox (or similar container runtime technologies) which pro-
vide the experience of using a VM, while working with a container. This means
that Docker, Kubernetes and other system-level software can be run without
issues within those containers, while maintaining the isolation of environments
that containers provide, and allowing for more efficient resource utilisation and
scaling than VMs. These are the ones I categorize as B2.

However there are still some CDE vendors who use “standard” containers as
CDEs, which are not suitable to run Docker and several containers within them.
Those are the ones I categorise as B1.

B3 containers also provide one standard single container as the developer’s
work environment, which contains the source code and an IDE backend. Howe-
ver these containers are deployed alongside other containers that make up the
application that the developer works on, removing the need for the developer to
deploy several containers within their CDE. This has the downside of separating
the developer from the other containers, making it more complicated to access
logs and inspect services running in those other containers. But it has the upside
of being closer to a production environment- assuming that the application the
developer works on runs in Kubernetes in production�

Configuration

 There are (at least) three layers of configuration that make up a CDE:

• Infrastructure: This relates to the infrastructure unit(s) that make up a CDE.

All CDEs allow to specify the available resources (cores, memory) for the CDE.
Some CDEs allow further configuration of the underlying infrastructure, e.g. by
specifying whether the CDE is a VM or serverless or one container or several
containers (C), or by configuring the cluster on which the CDE runs (B3). In
the comparison table, I list the technology available to the user to configure
the infrastructure layer� One difference between CDE products is the ability or
inability to template the infrastructure layer. Many CDE products exclude the
infrastructure layer from their templating options (A, B1, B2), meaning that a
developer has to choose the required resources for a CDE every time when
creating a new CDE (though it is often possible to set a default). That is not
because it makes sense for the developer to choose this, but rather because
it cannot be included in the software-layer, which is the only place that most

B (Intermediate): Fixed
deployment, but flexible
customization of the
software that runs
within the CDE.

Cloudomation - Cloud Development Environments 14

CDE products allow to template. Those CDE products that allow broader
customisation of the infrastructure layer typically also allow to fully template
resource specs�

• Software: This relates to the software that runs within a CDE and concerns the
operating system (OS) and everything above. The line between infrastructure
and software is a bit blurry when it comes to containers: Deploying several
containers into a cluster in addition to a CDE container is typically configured
at the infrastructure level, while the deployment of several containers within
one CDE (Docker-only) is typically configured on the software layer of the CDE.
The software layer is the one that is typically fully templated, meaning that
developers spin up a CDE without having to make any decisions about the
software layer�

• User-specific: This relates to any configuration that is done on top of the CDE
template(s) which is unique to a specific user. User-specific configuration is
typically applied in one of three ways:

 ◦ Interactive: Anything that is done manually by the user and has to be
repeated for each new CDEis considered interactive user-specific configu-
ration. This includes choices the user has to make whenever they deploy a
new CDE. For example, the user may have to choose which IDE they want
to use. It might (or might not) be possible to set default values for these
choices. Interactive user configuration also includes everything the user
does manually after the CDE has been created, to set it up for themselves.
For example, the user might customise port forwardings, or alter linter
settings etc. Interactive configuration is poor practice and should be mini-
mized as much as possible. While it is often good and sensible to enable
users to deviate from default values, any configuration that is expected to
be applied regularly should be templateable.

 ◦ User settings: Many CDE products store some user-specific information
within the CDE platform. For example, the user typically can upload their
public ssh key(s) to the CDE platform, which is then automatically injected
to each CDE the user deploys�

 ◦ Templated: Some CDE products allow users to apply their own settings via
configuration files. For example, some CDE products allow developers to
specify dotfiles that store different types of user preferences, such as IDE
settings like color schemes etc. Other CDE products allow users to store
some preferences in custom configuration files.

User-specific configuration is done in many different ways and is not a distingu-
ishing feature for most CDE products. I therefore don’t go into detail about user-
specific configuration in the feature comparison table.

Cloudomation - Cloud Development Environments 15

Compatible IDEs

Most CDE products list specific IDEs their products work well with. Since this is
a distinguishing feature, I include a list of compatible IDEs in my feature compa-
rison table. In the table, I list only those IDEs that vendors mention on their web-
site, which are IDEs their products are tested with and/or have specific plugins
for.

There are fundamentally different ways of using IDEs with a CDE:

• Purely browser-based: Almost all CDEs offer at least one IDE that can be

opened in the browser and allows developers to work with the CDE without
any dependencies on the local device (besides a browser). In the majority of
cases, this is (some fork of) VS code.

• Ssh-based with local thin client: Many CDEs also offer the option to use their
CDEs with a range of ssh-capable IDEs. Such IDEs consist of two compo-
nents: the IDE backend, which runs on the CDE, and an IDE thin client, which
the developer installs on their laptop and configures to connect to the IDE
backend on the CDE via ssh�

• As far as we know, only Cloudomation DevStack offers a third option: The
source code is mirrored between the CDE and the developer‘s laptop. The
developer can use any IDE or editor they like, fully locally. Developers can keep
using existing workflows, have the source code in their local file system, can
work on the code even when offline, and outsource only compute-intensive
tasks like building, testing and running the application to the CDE. As an ag-
nostic solution, DevStack supports a purely browser-based workflow using VS
code in the browser, as well as ssh-capable IDEs in addition to the option of
mirroring the source code locally.

In addition to what CDE vendors list on their websites, I want to point out that
many CDE products are compatible with any ssh-capable IDE, which includes VS
Code, JetBrains IDEs, Eclipse Theia, Jupyter, RStudio Server and probably others.

However, configuring those CDEs to work with an ssh-capable IDE that is not na-
tively supported may, while possible, require some effort. How difficult it is varies
a lot between CDE products and is generally easier with agnostic CDEs than with
more opinionated ones.

As a purely terminal-based editor, vim is a special case that can be used with any
CDE that allows direct ssh access to the CDE via a terminal.

https://cloudomation.com/en/cloudomation-devstack/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devstack

Cloudomation - Cloud Development Environments 16

CLI

Command Line Interfaces (CLIs) allow management of CDEs directly from a de-
veloper’s local terminal. CLI features vary but generally include the ability to crea-
te, start, stop and delete CDEs via the command line, as well as connection to
the CDE via ssh. Other features can include port forwarding to localhost, tailing
of logs of applications that run on the CDE, and other, product-specific features.

 The main benefits of a CLI are:

• Ability to script / automate CDE management
• More seamless way of working for the developer, especially for developers

used to working with the terminal

Note that a CLI is a local tool that a developer needs to install on their laptop�
Most CDEs aim to provide a work environment that is fully independent of the
local device, so the CLI is always an optional “add-on” that developers can, but
don’t have to use.

Source Code Security

 I use the the following categories of source code security to compare CDEs:

1. The entire source code is stored on each developer’s laptop. This is the
standard for git-based source control systems and has the benefit of each
developer’s laptop doubling as a backup. However, this also means that theft
or loss can happen fairly easily� This can be addressed with standard security
tools like disk encryption etc. For most companies, this is sufficient.

2. Source code is accessed via ssh, e.g. by the developer directly via a terminal
or through an ssh-capable IDE, or through a browser-based IDE. Malware
would have to be very clever to get at source code via ssh, however a targe-
ted attack could access it. Access to the source code can be removed cent-
rally. Developers can easily copy or download source code files to their local
file system.

3. Developers work via a remote desktop software. This can be set up so that
nothing can be copied between the remote and the local machine, and the
source code is streamed as images through the remote desktop client. It will
be very hard to steal the source code bar recording the screen and having AI
extract text from the recorded images.

Most CDEs offer level 2 security: remote access to the source code. If danger of
loss or theft is a relevant concern, this is already quite a good level of security.

So source code security can really only help to reduce the risk of theft or acci-
dental loss- for example, malware that steals the source code, or loss through
the loss of a laptop with the source code on it�

Categories for the
feature comparison
table

Yes (y) / No (n) in the
feature comparison
table

Cloudomation - Cloud Development Environments 17

In my opinion, there has to be some degree of trust between developers and
their employers. Developers naturally need access to the source code which they
work on. No CDE can prevent a motivated developer from stealing source code
if they want to� So source code security can really only help to reduce the risk
of theft or accidental loss- for example, malware that steals the source code, or
loss through the loss of a laptop with the source code on it.

Cloudomation - Cloud Development Environments 18

SaaS and on-prem

The available deployment options for CDE products vary, with many offered only
as SaaS, others only as on-premise, and some offering both options. For CDE
platforms available on-premise, I added a (K) for those that require a Kuberne-
tes cluster to run, since this has significant implications for self-hosting. Note
that some other on-premise CDE platforms can optionally be run with a Kuber-
netes cluster, but do not require one. I added the (K) only to those that cannot be
run without Kubernetes�

Pricing model

This describes what the user is charged for. Most CDE products charge per hour,
some charge per user, and some have more complex pricing models that combi-
ne hourly and per-user charges with other usage metrics.

Approx� price / dev / month

Even though per-hour pricing is used by most CDE vendors, the details of what
an hourly price includes and which other charges are applied vary a lot. To make
this more comparable, I calculated the approximate cost per month per develo-
per for each CDE product in the comparison table, based on a standard usage
model. For some vendors, extensive research was necessary to arrive at the
pricing estimates presented here. They are all based on the following
assumptions:

• 160 hoursof CDE runtime per month
• 4 core / 8GB memory CDEs
• A team of 20 developers. This is relevant for products that charge a flat-rate

fee which is independent of the number of developers using the CDE platform,
such as support or a fee for a single Kubernetes cluster which can be shared
by several developers. Such fees are divided by 20 to approximate the cost for
an individual developer�

• “Standard” usage in other metrics such as storage, networking etc., which are
relevant for only very few CDE product’s pricing and make up a small portion
of the total price

• No “extras”, e.g. no GPUs, prebuilds or other product-specific extras
• All estimates are based on publicly available pricing information. Many ven-

dors indicate that custom pricing packages are available for enterprise cus-
tomers, which may provide different conditions for larger numbers of develo-
pers�

• Where possible, infrastructure and license cost were calculated separately
(possible mostly for on-premise products)

Yes (y) / No (n) in the
feature comparison
table. For on-premise,
a (K) is added when a
Kubernetes cluster is
required.

Cloudomation - Cloud Development Environments 19

• For on-premise products, infrastructure cost was based on Azure on-demand
pricing for Sweden Central in August 2024

 ◦ For VM-based CDEs:
 > 1 standard tier Linux A4 v2 node with 4 Cores and 8GB RAM =
€ 27,26

 > 1 Standard HDD S4 32GB = € 1,44
 > TOTAL: € 28,70

 ◦ For Kubernetes based CDEs:
 > 1 standard tier AKS cluster: € 68,34 / month, divided by 20 to appro-
ximate cost for individual developers in a shared cluster = € 3,42

 > 1 Linux A4 v2 node with 4 Cores and 8 GB RAM for 160 hours =
€ 27,26

 > 1 Standard HDD S4 32 GB = € 1,44
 > TOTAL: € 32,12

As can be seen in the table, there are large differences in the prices of different
CDE products. Since the CDE products also vary quite a lot in what they offer,
differences in price make sense though they do not clearly reflect the quality or
power of the underlying solution, but rather the pricing power of the vendor and/
or their underlying cost.

This shows that the market is still immature. No common price points have been
established yet, though there is some convergence at a price point of approxi-
mately € 30-50 / dev / month, excluding infrastructure cost.

The fact that some SaaS vendors offer their CDEs for a similar price point in-
cluding infrastructure cost indicates a starting price war between the vendors
of very similar SaaS solutions who may be unable to compete on functionality.
Such pricing is probably subsidised by venture capital and/or startup credits
from the large cloud providers and are probably not sustainable.

Infrastructure costs can vary a lot depending on hosting options. Some CDE
vendors charge for infrastructure separately, with hefty surcharges on top of the
underlying compute costs.

The fact that there are also large differences in the underlying pricing models
makes price comparisons difficult, though there seems to be a convergence
towards hour-based pricing models.

Initial release

Here, I mention the year of the initial release of the product’s current version.
Some CDE vendors have significantly rebuilt or completely relaunched their pro-
ducts. In such cases, I will note the release year of the current / latest product.

Cloudomation - Cloud Development Environments 20

Vendor HQ

Being a European vendor ourselves, I thought it interesting to show how concen-
trated the CDE vendor market is geographically.

Comment

In the comment column, I point out specific characteristics of individual CDE
vendors or products that apply to only a few and therefore do not warrant indivi-
dual columns.

Excluded: version control

Many CDE vendors list prominently on their website which IDEs and which
version control systems their CDE product is compatible with. I exclude version
control from my feature comparison table because it is a bit nonsensical - any
version control system that works on Linux can be used on most of the CDEs I
describe here (exception: Microsoft Devbox, which is not Linux based), including
svn and all git-based version control systems. Git-based version control systems
include Gitlab, Github, Bitbucket, AWS CodeCommit, Azure Repos, Google Cloud
Source Repositories, git itself and many others.

Cloudomation - Cloud Development Environments 21

Configuration

Vendor USP Customiseability Infrastructure Software Compatible IDEs CLI Source Code
Security SaaS On-Prem Pricing model Licence Infrastructure (4

core, 8 GB RAM) Total Initial release Vendor HQ Comment

Eclipse Che CDEs in Ku-
bernetes B3 CheCluster.yml devfile VS Code, JetBrains IDEs,

Eclipse Theia
y 2 n y Open Source 0 € 32,12 € 32,12 2016

Canada (Eclipse
Foundation)

Oldest CDE project

Red Hat OpenShift Dev
Spaces

CDEs for
OpenShift,
based on
Eclipse Che

B3 CheCluster.yml devfile VS Code, JetBrains IDEs
y

(OpenS-
hift CLI)

2 y n
Per hour, part of
OpenShift subscription ?1 ?1 ?1 2019 US Commercial SaaS offering

of Eclipse Che

Gitpod No discernible
USP B2 Not possible gitpod.yaml

VS Code, JetBrains IDEs,
Jupyter

y 2 y n4 Per hour n / a n / a € 39,60 2021 Germany

Github Codespaces
Launch CDE
directly from
Github

B2 Not possible devcontainer
VS Code, JetBrains IDEs,
Jupyter

y
(Github

CLI)
2 y n Per hour n / a n / a € 43,74 2021 US

Strong Network Security, ob-
servability B1 Not possible GUI VS Code, JetBrains IDEs n 2, 3 ?5 ?5 Per user ?5 ?5 € 36,45 Probably 2021

or 2022 Switzerland

Okteto
Production-
like CDEs in
Kubernetes

B3
Okteto ma-
nifest, helm,
kubectl

Okteto manifest Any (local source code) y 1 y y Per user € 92,53 € 32,12 € 127,65 2022 US

Coder „Wrapper for
Terraform“ C Terraform

Terraform or
devcontainer or
dockerfile

VS Code, JetBrains IDEs,
Jupyter, RStudio

y 2 n y Per user € 32,712 € 28,70 € 61,41 2023 (V2) US
Open Source with limited features,
Enterprise licences for support &
advanced features

CodeSandbox
Fast spin-up
of CDEs, col-
laboration

B2 Not possible devcontainer
VS Code, proprietary in-
browser editor n3 2 y

y
(Enterprise only)

Per hour n / a n / a € 57,95 2023 (DevBoxes) Netherlands
Low-code dev tools, focus on FE
devs, performance, shared CDEs:
1 per branch

DevZero

Smart ca-
ching for
faster builds,
AI for writing
recipes

B3 Not possible DevZero recipe
Proprietary in-browser
IDE, VS Code, Eclipse Che,
JetBrains IDEs

y 2 y y Per user € 28,03 ? ? 2023 US
Only works with Github
repositories

Amazon CodeCatalyst
Simple to use
with other
AWS tools

B2 Not possible devfile
AWS Cloud9, VS Code,
JetBrains IDEs

y
(AWS
CLI)

2 y n
Package includes 200
hours per month per user

€ 18,69 € 16,80 € 35,49 2023 US

GCP Workstations

Gemini code
assist integra-
tions, simple
to use with
other Google
Cloud tools

B2 Not possible WorkstationCon-
fig.json

RStudio, JetBrains IDEs,
VS Code

y
(Google
Cloud
CLI)

2, 3 y n Per hour € 41,52 € 28,70 € 70,22 2023 US

Microsoft Dev Box
Windows Re-
mote Desktop
VMs

A Not possible GUI
Visual Studio, Windows
compatible IDEs

y
(Azure

CLI)
3 y n Per Dev Box n / a n / a € 138,03 2023 US

Cloudomation DevStack

Code stays lo-
cal, supports
complex
deployment
models

C Cloudomation
Engine

Devfile, devcon-
tainer or custom Any y 1, 2 y y

Packages with shared
hours per team

€ 41,95 € 28,70 € 70,65 2024 Austria

Gitlab Workspaces
Integrate
tightly with
Gitlab

B3 Not possible devfile
Gitlab web IDE (VS Code
fork)

n 2 y y Per user € 26,81 € 32,12 € 58,93 2024 US

JetBrains CodeCanvas
Easy to use
with other
JetBrains
products

B1 Not possible GUI JetBrains IDEs n 2 n y Per user € 46,22 € 28,70 € 74,92 2024 Poland Overlap with JetBrains Space

IDX by Google

Gemini co-
ding assis-
tant, Android
and web
emulator

B2, C VM Nix VS Code n 2 y n Free (for now) € 0 € 0 € 0 n / a US Public beta

DevPod by Loft Labs
Desktop app
for local CDE
deployment

?
Not in scope
(laptop is in-
frastructure)

devcontainer VS Code, JetBrains IDEs y 1 n y Open source € 0 € 28,70 € 28,70 n / a US Alpha

Daytona No clear USP B2 ? devcontainer
Web-based IDEs, no
specifics

y 2 n y Open source tbd n / a tbd n / a US Alpha

CPS1
Kubernetes-
based CDEs
that „just
work“

B3 Not possible devfile VS Code in browser n 2 n y Per user tbd n / a tbd n / a Not released

Feature comparison table
The table is ordered by the timeline of the CDE products first release. I exclude
the following CDE products from my comparison, since they are not under active
development / have been discontinued. I do mention each of them briefly in the
list of vendors below: Koding, Nimbus, Hocus.

1 OpenShift dev spaces are bundled with OpenShift, which is purchased as an
entire cluster with per-hour pricing. It is impossible to untangle or estimate the
price of one dev space within an OpenShift cluster�
2 Coder has no pricing information on their website (anymore). The estimate
here is based on pricing information from the Google Cloud marketplace, as well
as historic pricing information from 2021, when Coder still had prices on their
website�
3 There is a CLI for their „Sandbox“ IDE product, but not for their Devbox CDE
product�
4 Gitpod can be run „within your own cloud“, i.e. customers can give Gitpod
access to their AWS account and Gitpod will deploy their platform into the
customer‘s AWS account and manage it there. Gitpod gave up their self-hosted
option, probably because they were unable to give customers a goold experience
in self-hosting their complex Kubernetes-based platform.
5 On their website, Strong Network has no pricing information available and
doesn‘t explicitly mention hosting options. In their feature comparison table,
self-hosted in presented as a core feature. On G2, they list a pricing model for
a SaaS option, but it is not clear whether this is up-to-date.

Source Code Security
1� The entire source code is stored on each developer’s laptop.

2� Source code is accessed via ssh�

3� Developers work via a remote desktop software.

Category description
Here you will find a brief summary of the categories „Source Code Security“ and Custo-
misability“, as they are difficult to understand without context. Please refer to the chapter
„Main differences between CDE products“ to learn more about the individual categories.

Customizability: What can run on the CDE
(A) Highly opinionated: Only one specific type of software is supported. The CDE
deployment is largely hidden from the user.
(B) Intermediate: These CDEs have a fixed deployment model that the user cannot custo-
mize, but allow flexible customization of the software that runs within the CDE. There are
hree sub categories: containers vs. VMs

 ◦ B1: Single container

 ◦ B2: Multi-container (without Kubernetes, containers running directly in Docker)

 ◦ B3: Kubernetes

(C) Agnostic: (Almost) any type of software is supported. This includes Docker-only set-
ups for multi-container applications, as well as cluster-based, single-container, single VM
or multi-VM deployments, or serverless applications, as well as hybrid setups where e.g.
some services are shared between CDEs, while others are unique to each CDE.

Approx� cost /
dev / month

Cloudomation - Cloud Development Environments 22

List of vendors
Below, I briefly describe each CDE product and provide links with further informa-
tion. To make navigation easier, the list is sorted alphabetically.

Amazon CodeCatalyst Dev Environments

Amazon calls its CodeCatalys a “software development service” which intends
to offer automation and cloud resources for a number of different DevOps tools
and processes, among them development environments. As such, CDEs (called
“Dev Environments”) are presented as just a part of the package, which includes
CI/CD tools, monitoring and even a ticketing system.

As befits AWS, it is a complex product. Admitting that a lot of the feature rich-
ness (or complexity, however you want to call it) of CodeCatalyst is lost in this, I
will try to describe it very briefly and simply:

Amazon Dev Environments are single CDE containers, defined using the devfi-
le standard� They are intended to run an IDE backend and allow access to the
source code stored in AWS git. A standard Dev Environment doesn’t contain the
application that a dev works on, but instead is integrated with AWS CI/CD work-
flows to build and deploy the application in a production-like manner into AWS
compute resources. As such, the developer is separated from the application.

As befits AWS, it is a complex product. It can do a lot, but it also requires a lot
of expertise to get started and assumes that other AWS services are used for
all aspects of the development workflow, such as AWS git, AWS CI/CD and of
course AWS as infrastructure for everything.

My personal opinion: Working with such a CDE provides a very different way of
working than when working locally, building and deploying the application on the
developers workstation. It will feel the same as working with the code locally,
pushing to a source repo, and waiting for the CI/CD pipeline to finish in order to
inspect the application in a remote environment - a form of working that means
slow iterations. I wrote a somewhat opinionated blog post on this: The problem
with developing blindly�

It also provides very little added value compared to working locally. If the build is
done in a CI/CD pipeline, and the application is deployed remotely anyway, then
this is typically triggered by a commit to the source code repository, which I can
do just as well locally�

Having a place to run the IDE backend is only marginally valuable - only for pro-
jects that are so big that even debugging is too compute-intensive to run local-
ly. But that is usually not the problem. Version control and IDE are parts of the
development environment that already work very well locally. The problem is the

https://cloudomation.com/en/cloudomation-blog/the-problem-with-developing-blindly/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=blindly
https://cloudomation.com/en/cloudomation-blog/the-problem-with-developing-blindly/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=blindly

Cloudomation - Cloud Development Environments 23

application itself: local build, local deployments. CodeCatalyst does not aim to
support this�

A side note: Amazon recently decided to discontinue a number of dev / devops
focused products, among them their Cloud9 IDE, which it promoted as the IDE to
be used with CodeCatalyst. It remains to be seen if this presages a bigger shift
of AWS away from providing dev-tools, and what that would mean for the future
of Amazon CodeCatalyst.

Amazon CodeCatalyst is best for:
• Companies that already use other AWS products for source control and CI/CD

and who run their software on AWS infrastructure in production
• Companies with deep AWS expertise and dedicated teams that would provide

Dev Environment templates as a service to developers
• Companies that are not looking to provide developers with a “local–like” de-

velopment experience but who are fine with developers working blindly (which,
in my opinion, is only justified if there really is no way to provide a develop-
ment environment to developers that allows direct access to the application.)

Product website: https://codecatalyst.aws/explore/dev-environments
Docs: https://docs.aws.amazon.com/codecatalyst/latest/userguide/devenviron-
ment.html

Cloudomation DevStack

Cloudomation is a software startup that started out with an automation platform
(called Cloudomation Engine). They launched their DevStack CDE product in a
closed beta in 2023 and reached general availability in early 2024. It is based on
their automation engine, which is used to deploy the CDEs.

The default usage model of DevStack assumes that each CDE is a single VM
on which the application under development is built and run in exactly the same
way as it would on a developer’s laptop. Source code is mirrored between the
CDE and the developer’s laptop. In this way, developers can continue to use their
favorite IDE and other tools locally and do not have to change their workflow
when starting to use a CDE. Interaction of the CDE is done primarily via a com-
mand-line interface that allows developers to:

• Create new CDEs, start, stop, delete CDEs
• Start, stop and configure port forwarding
• Start, stop and configure two-way file synchronisation between the CDE and

the developer’s laptop - this includes the source code, but can also sync any
other files, e.g. f iles produced or used by the application that developers want
to inspect with specific tools locally

• Open interactive terminal sessions on the CDE

Full disclosure:
This is my company‘s
product

https://horovits.medium.com/disruption-ahead-aws-quietly-axing-services-033e7518eefb
https://horovits.medium.com/disruption-ahead-aws-quietly-axing-services-033e7518eefb
https://codecatalyst.aws/explore/dev-environments
https://docs.aws.amazon.com/codecatalyst/latest/userguide/devenvironment.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/devenvironment.html

Cloudomation - Cloud Development Environments 24

• Tail logs on the CDE
• Configure the CDE, e.g. timeout to hibernation, directories for file sync, which

DevStack instance to connect to etc�

All configuration done via the CLI can be templated and stored in a configuration
file as well.

CDE management can also be done via a web interface.

The standard CDE setup deploys a VM for each CDE and allows the user to fully
customise what should be deployed to this VM:

• A single development container specified in a devfile.yaml or devcontainer.
json

• A multi-container application described in a docker-compose file
• Fully custom deployment of any type of software directly to the VM, with or

without Docker

In addition, it is possible to create custom CDE templates for other, non-standard
deployment models such as:

• Multi-VM applications
• Complex deployment models, e.g. mixing shared services and services that

are deployed uniquely for each developer, with custom logic to define which
services have to deployed and connected in which situation

• Serverless apps
• Applications running in Nomad or Kubernetes clusters
• …

Templating of CDEs is done in Python, which provides limitless flexibility to de-
ploy CDEs of any type that the user requires. Templates for common deployment
models (such as using devfile, devcontainer, single-VM) are available and can be
used with minimal additional configuration effort.

With Cloudomation Engine as a Python-based general-purpose automation
platform under the hood, DevStack CDEs can also be seamlessly integrated with
existing tools and workflows seamlessly.

At the moment, DevStack is available only on-premise, with the option to choose
self-hosting or managed on-premise where the vendor takes care of manage-
ment of the CDE platform, but on the customer’s infrastructure. A SaaS offering
is planned for the future�

DevStack is best for:
• Organisations with complex and / or non-standard deployment models of their

applications

Cloudomation - Cloud Development Environments 25

• Organisations with well-working existing development workflows who want to
keep developers working as they are, with CDEs that integrate well into exis-
ting toolchains and workflows

• Organisations looking for a botique vendor that provides personal support and
services

Product website: https://cloudomation.com/devstack/
Documentation: https://docs.cloudomation.com/devstack/

Coder

In my opinion, Coder is one of the most interesting CDE vendors. It was founded
in 2017, underwent several fundamental changes to its product, and released a
fundamentally changed Coder v2 in August 2023.

Their product history shows how the market develops.

Coder started out developing VS Code for the browser as an open source pro-
ject. They are the original authors of code-server which makes it possible to
run VS Code in the browser. This was and still is hugely successful: It had 66,8k
stars on Github at the point of writing this whitepaper.

From there, they listened to their users and realised that “just” an IDE is not
enough: developers need to be able to run the software they develop as part of
their work environment. They then started to build a container-based CDE plat-
form.

Again listening to their users, they then realized that a container is not enough:
developers of more complex software - which are the ones who most benefit
from using a CDE because their development environments are the most difficult
- cannot run their software comfortably within a container.

So they set out to provide VMs as CDEs� Constrained by their initial architecture
choice of providing CDEs as containers within Kubernetes, their first solution
consisted of providing container-based virtual machines (CVMs) which can run
Docker within a container. This is painful to manage and comes with a signifi-
cant performance penalty.

So they set out to make their CDEs even more flexible. Coder version 2 allows
users to use a number of different Terraform templates to deploy workspaces as
VMs, containers, or whatever else is possible to define with Terraform.

Now, Coder positions this flexibility regarding the infrastructure of CDEs as their
USP. To me, this showcases nicely the story of a solution that is incrementally
improved based on feedback from users.

https://cloudomation.com/en/cloudomation-devstack/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=devstack
https://docs.cloudomation.com/devstack/

Cloudomation - Cloud Development Environments 26

Unfortunately, it also shows the typical evolution of any software solution: it
started out very simple, and became more and more complex. While Coder now
supports a wide range of use cases, it is also more complex to set up and use
than many other CDE solutions.

Coder is best for:
• Companies that need alot of flexibility in the definition of their CDEs, e.g. be-

cause they have non-standard or complex deployment models
• Companies that already have experience with Terraform or who already use

Terraform for production and other deployments
• Companies with dedicated platform engineering teams that can manage the

Coder platform and provide automation templates for developers as a service

Docs (v2): https://coder.com/docs/v2/latest
Product website: https://coder.com/

Coder Pricing

The coder platform is open source and free to use with a limited set of features.
For support and extended features, an enterprise offering is available but pricing
details for this are not publicly available�

However in the past, Coder had per-user pricing on their website, which they
removed some time after 2021. Back then, the cost per user per month was USD
35, billed annually, and self-hosted, i.e. excluding infrastructure cost.

At the time of writing this whitepaper (August 2024), Coder still had pricing
information online on the Google Cloud marketplace, where a package for up to
10 users is available for USD 350 / month, again billed annually and excluding
infrastructure cost�

I used this information as a basis for the cost estimate provided in the feature
comparison table, but want to point out that it may not be up to date.

Codesandbox

Codesandbox has also recently changed the core architecture of their product
and continues to make fundamental changes to its product.

At the time of writing this whitepaper (August 2024), Codesandbox supports two
types of CDE products:
• Devboxes, which are based on microVMs and support running multi-container

Docker-based applications
• Sandboxes, which run purely in the browser, with a severely limited feature

set (e.g. only JavaScript projects and no Docker support). At the end of 2023,
Codesandbox deprecated their “legacy sandboxes”, but continue to support
Sandboxes in their new platform.

https://coder.com/docs/v2/latest
https://coder.com/

Cloudomation - Cloud Development Environments 27

The feature comparison table as well as the rest of this section will focus only
on the Devboxes product�

Codesandbox has a clear focus on frontend developers. Its documentation
heavily features examples from frontend development. It provides a set of dev
tools within their custom built in-browser IDE which are tailored to work on visual
elements, supporting the work of designers and frontend developers.

Codesandbox is best for:
• Frontend teams or teams working on software with a strong focus on user

experience and design
• Dev teams that have no established toolsets or working practices yet (e.g.

who are starting a new project) or who are explicitly looking to change their
existing workflows and tools

Docs: https://codesandbox.io/docs/
Product website: https://codesandbox.io/

CPS1

CPS1 (short for “cloud programming shell 1”) is an on-premise Kubernetes-ba-
sed CDE platform developed by a Brazilian startup.

CDEs are configured using Devfile.yaml and are deployed as single containers
to a Kubernetes cluster, alongside other application containers. Management of
CDEs is done via a web interface�

Product website (in Portguese): https://www.cps1.tech/

Daytona

Daytona was founded in 2023 and decided to open-source their product, current-
ly in early beta, in spring 2024. Despite the early state of their product and recent
founding date, they are very present in the online discussion about CDEs.

Calling their product a “Development Environment Manager”, it follows a very
similar approach to DevPod. Developers install Daytona locally on their lap-
tops, and use it to deploy container-based CDEs either locally using Docker, or
to remote infrastructure. Developers will appreciate their command-line-first
approach, currently exposing their product exclusively via a CLI (command-line
interface). CDEs are single containers which can be described with a devcontai-
ner.json, or by specifying a container image directly.

https://codesandbox.io/docs/
https://codesandbox.io/
https://www.cps1.tech/

Cloudomation - Cloud Development Environments 28

This means that developers are again responsible for managing and configuring
the deployment of their development environments themselves. They set up and
configure Daytona on their laptops, meaning that they cannot use Daytona CDEs
from other devices.

Daytona is best for:
• Individual developers curious to test and provide feedback to an early-stage

CDE product

Product website: https://www.daytona.io/
Documentation: https://www.daytona.io/docs/

DevPod by Loft Labs

DevPod is an open source project with a different approach to CDEs than most
other tools. It is a desktop app (available for Windows, Mac and Linux) which
can be used to deploy CDE containers to almost any environment that can run
Docker containers, including Kubernetes clusters in the cloud or the developer’s
own laptop�

I say almost any environment because DevPod comes with a certain set of so-
called providers which allow deployment into specific environments. Providers
are available for Docker, Kubernetes, SSH, AWS, Google Cloud, Azure and Digital
Ocean. However, it is possible to write your own provider. These providers take
a devcontainer.json config file and create a container (and if necessary a VM on
which to deploy the container) based on the config in the selected environment.

An IDE backend can be deployed to the CDE container. VS Code Browser, VS
Code with ssh backend and JetBrains IDEs with ssh backend are supported,
meaning that deployment of their backends into the CDE container and configu-
ration of connection to those backends can be done pretty easily�

Using standard Docker to deploy CDEs, the single-container CDEs are not inten-
ded to run multiple Docker containers or other system-level software within the
container. The idea is again that the CDE is used primarily to run an IDE backend
and any utilities required to enable debugging and linting, but not to actually de-
ploy the full application that a developer works onunless it is a lightweight web
app that can sensibly run within a single container.

The assumption is that there is a CI/CD pipeline that builds and deploys the
application after the developer commits their code changes to the source code
repository - once again leaving the developer stuck working with slow feedback
cycles. (See: The problem with developing blindly)

https://www.daytona.io/
https://www.daytona.io/docs/
https://cloudomation.com/en/cloudomation-blog/the-problem-with-developing-blindly/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=blindly

Cloudomation - Cloud Development Environments 29

I think this is a quite curious approach. It doesn’t remove dependence on deve-
lopers laptops. It also doesn’t allow to provide CDEs centrally as a service to de-
velopers (though the devcontainer.json file can be provided centrally). It doesn’t
allow central management or visibility of CDEs. It relies on individual developers
setting up and correctly configuring the DevPod app on their laptops, figuring
out how to connect to a remote environment, correctly using a provider, and then
deploying CDE containers.

DevPod is best for:
• Work on small, lightweight projects such as webapps
• Individual developers who work on different projects and want to ensure sepa-

ration of projects from each other
• Small development teams working with different operating systems on their

laptops, struggling to deploy IDE backends to these different laptops
• Developers who want to deploy a single-container CDE both locally on their

own laptops or remotely to a cloud environment, e.g. because debugging lo-
cally is slow due to resource constraints but needs to be possible because the
developer doesn’t always have access to an internet connection

Product website: https://devpod.sh/
Docs: https://devpod.sh/docs/what-is-devpod

DevZero

Looking at their documentation, DevZero looks like an ambitious but still imma-
ture product to me.

Their idea is sound: The core of their product is a “CDE management plane”, i.e.
a component that allows to store CDE templates and use them to create and
manage CDEs. This CDE templating, deployment automation and management
functionality is the core of what CDEs in general provide, on top of standard
compute resources and integrations with existing tools.

The management plane is connected to one or more Kubernetes cluster, in
which the CDEs run. CDEs are called “workspaces” and consists of a cluster, a
DevBox (not to be confused with Microsoft Dev Boxes of Devbox by Jetpack),
which looks equivalent to the CDE container in other setups, and any other re-
sources that are defined as part of the workspace in their custom yaml configu-
ration format called “recipe” (not to be confused with Ansible recipes).

Put simply: You get a CDE container that runs alongside other resources (i.e.
containers or pods) in a Kubernetes cluster.

https://devpod.sh/
https://devpod.sh/docs/what-is-devpod

Cloudomation - Cloud Development Environments 30

However the way they go about it is a bit strange. The management plane is
always provided as SaaS. Customers can choose to deploy CDEs in their own
infrastructure, but then they have to provide root access to their infrastructure
(e.g. a cloud account) to the management plane in order to allow it to create re-
sources within their infrastructure� There is currently no option to also host the
management plane on-premise.

DevZero also has a few known issues which they will probably solve at some
point, but mean some inconvenience for current users:

• Templating of CDEs is done via a custom yaml configuration format they call
“recipes” (not to be confused with Ansible recipes). These recipes can only be
defined in a web UI, where they are also stored and versioned. This means that
recipes are not kept in yoursource code repository together with your source
code, but are contained within the DevZero web UI and can only be accessed
there. As a custom configuration format, it also requires some learning to figu-
re out how such recipes are defined - though they now promote an AI assis-
tant that supports the creation of recipes (haven’t tried it).

• CDE containers are hardcoded to use an Ubuntu:22.04 base image. The do-
cumentation states that custom base images are available only to enterprise
customers, suggesting that base images are somehow managed manually by
the DevZero team.

• CDEs cannot be stopped / hibernated manually, and it is not possible to cus-
tomise hibernation logic. Once a workspace is “inactive” (no inbound con-
nections) for more than 30 minutes, it will automatically be hibernated. Work-
spaces will automatically restart when there is an incoming connection. But:
Only one hard-coded directory (/home/devzero) is persisted for hibernated
workspaces� Any content outside of that directory is deleted on hibernation!

DevZero is best for:
• Hard to say! I would say for companies that develop Kubernetes-based pro-

ducts, but for those, Okteto looks like a more mature commercial offering
(though DevZero might be cheaper), and Eclipse Che is already the go-to
choice for open-source tinkerers working with Kubernetes.

• Possibly for companies that are looking for a small vendor that may provide
personalised support and services, though that is hard to judge from their
website�

Product website: https://www.devzero.io/
Docs: https://www.devzero.io/docs/

https://www.devzero.io/
https://www.devzero.io/docs/

Cloudomation - Cloud Development Environments 31

GCPWorkstations

Google Workstations are pretty standard container-based CDEs. Workstations
run in a Google Cloud compute cluster. Each workstation is a separate VM in
which a single Workstation container is deployed.

Workstations are built from a container image. If and where this container image
is built is up to the user, though there is documentation to support users on how
to set this up. Nevertheless, building the container from a configuration file is not
part of the Google workstation CDE offering.

Additional customisation, such as the machine type to be used, is done via the
Google Cloud console web interface or via the Google Cloud API or CLI. The con-
figuration is stored in a proprietary, but fairly standard and simple configuration
format called WorkstationConfig.json.

Curiously, users will quickly encounter a “nested virtualisation” option, which
allows users to deploy VMs within their workstation container�

Eclipse Che

Eclipse Che is the oldest CDE Open Source project� It started as a web IDE and
developed additional CDE features from there.

It is Kubernetes-based and configuration of the development container is done
via Devfile. Eclipse Che CDEs are Kubernetes pods. Several containers can be
deployed to these pods. This means that multi-container applications can run
within an Eclipse Che CDE, with one development container running alongside
the application containers�

It supports VS Code, JetBrains and Eclipse Theia browser IDEs.

While a great project, talking to engineers who have worked with it I have heard
that it can be difficult to set up and get to work properly, and requires quite a bit
of effort in continuous maintenance as well as expertise in Kubernetes.

Eclipse Che is best for:
• Dev teams working on products that run in Kubernetes in production
• Organisations with dedicated platform engineering (or similar) team(s) with

Kubernetes expertise who have the resources to manage Che as a service for
their dev teams

• Organisations with the inclination and resources to support Che internally,
without relying on support from a vendor

Docs: https://eclipse.dev/che/docs/
More info: https://github.com/eclipse/che

https://eclipse.dev/che/docs/
https://github.com/eclipse/che

Cloudomation - Cloud Development Environments 32

Google mentions in its documentation that this comes with severe performance
penalties of 10% or more. No wonder: You’d have a VM that runs a Docker con-
tainer which emulates running of another VM inside the container. That’s a few
layers too many to provide sensible performance or experience.

As customary for Google products, the documentation is very good and there are
a large number of examples and templates available.

Like all CDE products from cloud infrastructure providers, Google workstations
are only available in Google cloud.

Google workstations are best for:
• Organisations that already use Google Cloud to run their application in produc-

tion
• Organisations that already use other Google Cloud products in their develop-

ment processes, such as Google Cloud Build and the Google container regis-
try

• Organisations that have people with experience and knowledge of Google
Cloud, who provide workstation configurations as a service to developers

More info: https://cloud.google.com/workstations?hl=en.
Docs: https://cloud.google.com/workstations/docs/

Github Codespaces

Github Codespaces has the huge advantage of being tightly integrated and
offered directly via github, therefore addressing a large user base which can use
it for up to 60 hours a month for free. It is only available as SaaS and cannot be
self-hosted� It can also only be used with Github and not with other source code
repositories�

Github Codespaces is best for:
• Individual developers or small teams who host their projects in Github
• Developers working on open source projects that are hosted on Github

Docs: https://docs.github.com/en/codespaces/overview
Product website: https://github.com/features/codespaces

Gitlab Workspaces

Gitlab workspaces are the CDE product of Gitlab� It was launched in Beta in June
2023 and reached general availability in January 2024.

https://cloud.google.com/workstations?hl=en.
https://cloud.google.com/workstations/docs/
https://docs.github.com/en/codespaces/overview
https://github.com/features/codespaces

Cloudomation - Cloud Development Environments 33

They are pretty standard container-based CDEs which are configured using a
devfile.yml which is stored alongside source code in a Gitlab repository. CDEs
are managed directly via the Gitlab web interface and can be spun up for any
Gitlab project�

The workspaces CDEs are bundled with the Gitlab platform and can be used as
SaaS or self-hosted, but only in combination with the rest of the Gitlab platform.
CDEs can only be used with the Gitlab IDE, which is a VS Code fork.

The CDEs run as pods in a Kubernetes cluster. This means, hosting Gitlab on-pre-
mises means running a Kubernetes cluster as well.

As a very new feature, Gitlab workspaces still have a fairly limited feature set and
quite a few known issues. Built as a feature of the Gitlab platform, it is also not
intended to be used as a standalone CDE product�

Gitlab Workspaces are best for:
• Organisations that already use Gitlab as a central tool in their development

workflow
• Organisations with lightweight containerised applications whose deployment

can be expressed in a single docker-compose file

Docs: https://docs.gitlab.com/ee/user/workspace/

Gitpod

Gitpod is one of the most mature and popular CDE products currently on the
market. It established the technological blueprint that most other CDE products
follow: CDEs are containers that are configured to mimic VMs, meaning that
any type of workload can run within them, including system-level software like
Docker or Kubernetes. To a developer, working in such a container feels similar
to working in a VM or on a laptop. For the CDE vendor, this architecture has the
advantage of allowing better isolation of CDEs from the vendor’s infrastructure.

In addition, it allows Gitpod to host their CDEs in Kubernetes, allowing for flexible
scaling and efficient use of compute resources, which is necessary to be able to
offer it as a SaaS product with a reasonable price point�

However, using Kubernetes as a basis for their product means significant opera-
tional overhead for running a Gitpod instance, which is why Gitpod discontinued
their self-hosted option in December 2022 and let go of the engineering teams
that were working on this.

One of their engineers started a project to continue supporting self-hosting
Gitpod, but gave up in April 2023 when Gitpod stopped publishing containers in
publicly available registries.

https://docs.gitlab.com/ee/user/workspace/
https://www.gitpod.io/blog/self-hosted-not-self-managed
https://www.gitpod.io/blog/self-hosted-not-self-managed
https://github.com/mrsimonemms/gitpod-self-hosted
https://github.com/mrsimonemms/gitpod-self-hosted

Cloudomation - Cloud Development Environments 34

While ostensibly open source, removing access to vital resources to enable de-
ployment of a self-hosted Gitpod instance, Gitpod cannot be used free of charge.

I think there are two reasons why Gitpod discontinued supporting a self-hosted
option. First, they could not monetise it. Second, they were not able to provide a
good experience for it (which is the reason they publicly stated).

Gitpod tried to turn this into an advantage by switching to a “self-hosted, vendor
managed” model. In this model, a customer gives Gitpod full access to an AWS
account within their VPN, and Gitpod deploys and manages a dedicated Gitpod
instance for the customer in this AWS environment.

While this might be a sensible offer for enterprise customers with hundreds of
developers, for anyone else this is a very expensive option that they will struggle
to utilise to an extent where they achieve a sensible ROI� The cost and operatio-
nal overhead of running Gitpod becomes cost effective only for very large num-
bers of developers�

For anyone else, Gitpods SaaS offering is a good entry point for individual deve-
lopers and small teams, though it can also become quite expensive when deve-
lopers need more than a 2-core machine.

Gitpod is best for:
• Devs working on simple to medium-complexity software with low resource

requirements
• Individual developers and small teams looking for a SaaS option
• Very large development teams looking for a vendor-managed solution that

runs in their AWS environment

Product website: https://www.gitpod.io/
Docs: https://www.gitpod.io/docs/introduction

IDX by Google

Initially an experiment - when a single-page website announced it in mid-2023.
Now, in mid-2024, it has graduated to “project IDX” and is in public beta. It is a
CDE product, but one that focuses on mobile app and web development with a
special focus on Flutter projects. As such, it features android emulators and web
previews as core features. It also heavily promotes its integration with Google’s
Gemini code assistant.

Developers access IDX purely in the browser, with a VS Code fork available as
IDE. CDEs are virtual machines which, obviously, run in Google Cloud.

It is the first CDE product I’ve seen that is based on the nix package manager
(https://nixos.org/). CDEs are templated via a nix configuration file.

https://www.gitpod.io/
https://www.gitpod.io/docs/introduction
https://nixos.org/

Cloudomation - Cloud Development Environments 35

With a focus on web and mobile apps and built-in emulators, IDX is built to run
lightweight web and mobile apps directly in the CDE. However it is clearly not
built for large-scale application development of business or server software.

IDX itself is currently free to use, though users are charged for the compute
resources they use on Google Cloud as well as any other Google services they
use through IDX. I assume that a pricing model will be communicated once the
project leaves beta, but I personally think it is likely that there will be a free tier
also in the future�

IDX is best for:
• Individual developers looking to experiment with AI-supported web or mobile

development
• Individual developers or small teams starting a new web or mobile project

 Product website: https://idx.dev/
 Documentation: https://developers.google.com/idx/guides

JetBrains CodeCanvas

JetBrains is primarily known for its IDEs, which are integrated with a lot of CDE
products�

Its product strategy is not quite clear to me, since it has launched several clo-
sely related products with partially overlapping feature sets that compete with
products of their partners. First, JetBrains launched their Space product, an
“intelligent code collaboration platform”, which had some limited CDE features.
Now, its CodeCanvas product, launched in April 2024, is branded as a full CDE
product. In the meantime, JetBrains is pursuing partnerships with several CDE-
vendors who have integrated their products tightly with the JetBrains IDEs. As
such, I’m personally unsure if and how their product roadmap will develop and if
a CDE product has a fixed place in it.

CodeCanvas is described as a CDE management platform, through which sin-
gle-container CDEs can be created, started, stopped and deleted. CDEs run in
a Kubernetes cluster and are intended to run a JetBrains IDE backend� While it
might be possible, it is not an intended use case of CodeCanvas to run the full
application within the CDE�

Developers connect to the CDE with JetBrains Gateway, a desktop application
that allows users to locally connect to JetBrains IDE backends�

CDEs are configured via a custom template that is created in a web UI. It con-
tains reference to a dockerfile which describes the CDE container (single contai-
ner).

https://idx.dev/
https://developers.google.com/idx/guides

Cloudomation - Cloud Development Environments 36

Microsoft Dev Box

True to form, Microsoft is the only vendor brazen enough to brand a remote
desktop product as a work environment for software developers. Considering
Microsoft owns Github, it makes sense it doesn’t want to directly compete with
the Github Codespaces CDE product (though it still does that a little bit through
its reference implementation of VS Code Remote with devcontainers).

DevBoxes are Windows machines that users connect to via the Microsoft Remo-
te Desktop app or a browser. They are hosted in Azure and only available in the
cloud�

Microsoft addresses the issue of latency which makes remote desktop working
unattractive for most people by automatically deploying Dev Boxes to the closest
available Azure region. I can’t say if that leads to good experience, but for Micro-
soft-focused developers of desktop applications, it might be a good alternative
since container-based CDEs are simply not suitable for development of Windows
Desktop applications or fat clients�

Since Dev Boxes are Windows machines, any Windows software can run on
them. Configuration of the machine specs as well as management of the Dev
Boxes is done via a web GUI. Customisation of the Dev Box can be done by spe-
cifying a custom Windows image to be deployed to the Dev Boxes. This means
the Dev Box configuration cannot be done as code but only through manually
prepared images.

The (JetBrains) IDE is also fixed at the template level. Notably, the template also
contains resource specs and the git repository and branch, meaning that develo-
pers really only have to push a button to get started and don’t have to specify any
additional configuration (unless they want to deviate from the template).

JetBrains offers CodeCanvas as a self-hosted product that customers can run in
their own cloud accounts. It requires a Kubernetes cluster and is currently com-
patible with Amazon EKS, Azure AKS and Google GKE.

JetBrains CodeCanvas is best for:
• Organisations that already use JetBrains IDEs and other JetBrains products in

their development workflows
• Organisations who do not want to deploy their applications within the CDE

(which, in my opinion, removes the main benefit of a CDE. Finding a place to
run an IDE backend is not the challenge that CDEs need to solve.)

Product website: https://www.jetbrains.com/ide-services/codecanvas/
Documentation: https://www.jetbrains.com/help/codecanvas/introduction.html

https://www.jetbrains.com/ide-services/codecanvas/
https://www.jetbrains.com/help/codecanvas/introduction.html

Cloudomation - Cloud Development Environments 37

Red Hat OpenShift Dev Spaces

Previously called Red Hat CodeReady, Red Hat OpenShift Dev Spaces is a com-
mercial offering for Eclipse Che.

Okteto

Okteto provides CDEs for multi-container applications that run in Kubernetes.
The Okteto platform deploys a dedicated development container - the CDE - next
to one or several containers for the application that is being developed.

Deployment of the application is based on an Okteto manifest, which is based on
helm charts, kubernetes manifests, or docker-compose files which the user has
to supply. Once this is set up, Okteto redeploys the application with each com-
mit.

Because Okteto provides deployment automation for applications into Kuber-
netes, it doesn’t primarily position itself as a CDE vendor. But their deployment
automation is not intended for production deployment and doesn’t replace a full
CI/CD pipeline (it serves the “inner loop” needs of development teams). Their
main claim is to improve developer experience for working on Kubernetes-based
products�

Okteto as a company was founded in 2018, but version 1.0.0 of Okteto was only
released in 2022�

Okteto is best for:
• Dev teams working on software that runs in Kubernetes in production
• Organisations that are looking for a commercial vendor to provide support
• Organisations looking for a SaaS offer or a supported self-hosted option

Product website: https://www.okteto.com/
Docs: https://www.okteto.com/docs/

Microsoft doesn’t list specific IDEs which are available in their Dev Boxes, but I
assume it will be any IDE that can be installed in a Windows environment. There
is a specific section in the documentation explaining precaching of resources
with Visual Studio (not VS Code) to improve performance after starting a Dev
Box�

Microsoft Dev Boxes are best for:
• Organisations that develop Windows Desktop applications

More info: https://azure.microsoft.com/en-us/products/dev-box
Docs: https://learn.microsoft.com/en-us/azure/dev-box/

https://www.okteto.com/
https://www.okteto.com/docs/
https://azure.microsoft.com/en-us/products/dev-box
https://learn.microsoft.com/en-us/azure/dev-box/

Cloudomation - Cloud Development Environments 38

Strong Network

Strong Network is a security-focused CDE product. It is only available as self-
hosted and has a lot of features related to air-gapping the CDEs so that no data
can leave the CDE undetected�

Strong Network also has a lot of “observability” features as well which allow
administrators to snoop in great detail on what the developers are doing on the
CDEs�

The CDEs feature a fine-grained permissions concept (role-based), which looks
fairly complex to manage.

It is also a classical container CDE, which can work with any browser-based or
ssh-capable IDE, notably VS Code and JetBrains IDEs. The containerised CDEs
run in a Kubernetes cluster. Customisation of the workspace is done via a web
portal where limited configuration options for workspaces are available.

My impression of Strong Network is that it focuses a lot less on developer expe-
rience and a lot more on the goals of management than other CDE vendors.

The product documentation as well as their website in general give the impres-
sion that Strong Network probably has close relationships with their customers,
support them individually a lot, and don’t focus on providing information to the
public, since their product is not intended to be used in self-service anyway. They
do not publish release notes and I was not able to find out when their product
was initially released. The company was founded in 2020, so I assume that they
left beta sometime in 2021 or 2022.

Red Hat offers it as a standard part of its OpenShift subscription, as a way to
deploy development containers alongside application containers into OpenShift.

Red Hat OpenShift Dev Spaces is best for:
• Organisations that use OpenShift and run their production environments in

OpenShift

When researching OpenShift, you will quickly come across Codenvy, which is
part of Eclipse Che (this Eclipse newsletter from 2015 explains it best).

Product website: https://access.redhat.com/products/red-hat-openshift-dev-
spaces or https://developers.redhat.com/products/openshift-dev-spaces/over-
view
Docs: https://docs.redhat.com/en/documentation/red_hat_openshift_dev_
spaces/3�14/

https://www.eclipse.org/community/eclipse_newsletter/2015/february/article2.php
https://access.redhat.com/products/red-hat-openshift-dev-spaces or https://developers.redhat.com/pro
https://access.redhat.com/products/red-hat-openshift-dev-spaces or https://developers.redhat.com/pro
https://access.redhat.com/products/red-hat-openshift-dev-spaces or https://developers.redhat.com/pro
https://docs.redhat.com/en/documentation/red_hat_openshift_dev_spaces/3.14/
https://docs.redhat.com/en/documentation/red_hat_openshift_dev_spaces/3.14/

Cloudomation - Cloud Development Environments 39

Strong network is best for:
• Organisations with a strong security focus that want to track their source code

closely

Product website: https://strong.network/
Docs: https://docs.strong.network/getting-started/

https://strong.network/
https://docs.strong.network/getting-started/

Cloudomation - Cloud Development Environments 40

Hocus

Hocus had a short but interesting life. It was founded in early 2023 and wound
down again in November 2023. Focused on providing memory-efficient CDEs
that allow to run kernel-level processes on a CDE with clean separation of indivi-
dual CDEs from each other, they got down to the very nitty gritty details of virtua-
lisation technologies and their limitations (see https://hocus.dev/blog/).

I don’t know if they were not able to solve it to their satisfaction, were intimidated
by the competitive landscape or simply ran out of money - whatever the reason,
they stopped development in November 2023.

Product website: https://hocus.dev/
Docs: https://hocus.dev/docs/intro

Koding

Founded in 2011, Koding was one of the earliest CDE projects out there. The
company was wound down in 2018, the project was open-sourced, but the repo-
sitory was archived (but is still available as read-only) in 2022.

Koding developed its own configuration format to define development environ-
ments as code. Based on these stack scripts, VM-based CDEs are deployed.

More info: https://www.koding.com/
Git repo: https://github.com/koding/koding
Docs: https://hocus.dev/docs/intro

Nimbus

Nimbus was a VM-based CDE platform with a fairly manual approach. VM
snapshots were used as CDE templates, meaning that CDEs were not defined in
code but as manually prepared snapshots.

Even though it is not clearly stated on their website, Nimbus was discontinued in
mid-2023.

Product website: https://www.usenimbus.com/
Docs: https://docs.usenimbus.com/

Discontinued CDE products

https://hocus.dev/
https://hocus.dev/docs/intro
https://www.koding.com/
https://github.com/koding/koding
https://hocus.dev/docs/intro
https://www.usenimbus.com/
https://docs.usenimbus.com/

Cloudomation - Cloud Development Environments 41

In this section, I describe several CDE-adjacent tools. I think it is important to
include them because

• some of them are sometimes included in lists of CDE tools though they differ
in fundamental aspects from my definition of a CDE tool. Here, I explain what
they do and why I do not classify them as CDE tools, and

• because some of them may be good solutions for some development teams
who might not need a “full” CDE.

Stackblitz

Stackblitz is currently focused on Node.js projects. It prides itself on being
extremely fast, with CDEs being available within seconds. The core innovation
of StackBlitz is its usage of WebContainers, which move all the compute to the
browser. Having a Node.js runtime in the browser means that you can run and
debug Node.js backend code also in the browser.

This makes it not really a CDE, since it does not run in the cloud but rather on
your machine, but within your browser. The benefit of this is that no internet con-
nection is required to use this browser-based (C)DE. Therefore, I see it more as a
different type of IDE rather than a CDE�

Docs: https://developer.stackblitz.com/
More info: https://stackblitz.com/

JetBrains Space

In the previous version of this whitepaper, I listed JetBrains Space as the CDE
product of JetBrains. In the meantime, their focus has shifted, with Space gro-
wing into a “platform for the entire development pipeline”. Part of the Space of-
fering is a compute environment for the IDE backends of the JetBrains IDEs - but
beyond that, JetBrains space provides no CDE-specific functionality.

Instead, JetBrains has started to collaborate with CDE vendors to provide tight
integration between their products. To this end, JetBrains is developing Gateway,
a desktop application that can be used to connect to any CDE with the help of
CDE-specific plugins, which can be provided by different CDE vendors.

Plugins are currently available for GitHUb Codespaces, Gitpod, Google Cloud
Workstations, and Coder. Connections can also be set up using only ssh, which
allows developers to connect to any remote environment that runs a JetBrains
IDE backend�

Honorary mentions

https://developer.stackblitz.com/
https://stackblitz.com/

Cloudomation - Cloud Development Environments 42

To make things more confusing, JetBrains has also introduced yet another
product called CodeCanvas in April 2024. It is described as a self-hosted remote
development environment orchestrator.

Product website: https://www.jetbrains.com/space/
Docs: https://www.jetbrains.com/help/space/getting-started.html

Devbox by Jetpack

Not to be confused with Microsoft Devbox�

Devbox is based on the Nix package manager and provides isolated Nix pa-
ckages for development environments.

By creating CDEs as packages, the level of isolation is different from a container
or a VM: an isolated package contains all dependencies the package needs to
run, but shares the operating system with the rest of the environment. By isola-
ting the packages, Nix makes it possible to remove dependency conflicts that
arise from different software in the same environment needing different versions
of some other software.

Configuration of the Devbox environments is done by customising existing Dev-
box templates through a CLI. Configuration is stored in a devbox.json which is
intended to be committed to the source repo, where other developers can then
deploy the same Devbox with the same config. Adding custom scripts e.g. to
deploy your own software is also possible�

CDEs as packages are an interesting idea: it makes it very simple to distribute
the packages. Developers simply install a package (based on a config file they
get from their source repo) with a package manager like they do for many other
things as well.

However, Devbox addresses only the issue of dependency conflicts - which the
Nix package manager really does for them. What Jetpack does is to provide
templates for dev environments that can be used with the Nix package manager.
It doesn’t provide tooling for remote development, and therefore doesn’t qualify
as a CDE�

It’s not a cloud or remote development environment. Developers install CDE pa-
ckages locally. They could be installed anywhere, but then the issue of managing
and connecting to these remote CDEs is the problem of the user. This means
that developers are stuck with the performance they get locally.

Product website: https://www.jetpack.io/devbox
Docs: https://www.jetpack.io/devbox/docs/

https://www.jetbrains.com/space/
https://www.jetbrains.com/help/space/getting-started.html
https://www.jetpack.io/devbox
https://www.jetpack.io/devbox/docs/

Cloudomation - Cloud Development Environments 43

E.g. for teams that work on complex, multi-component, heavy duty software with
complex and / or non-standard deployment models. Many CDE products focus
on lightweight applications with simple deployment models, such as webapps.
In my opinion, such CDE products have only marginal benefits because local de-
ployment of such apps is already simple and there is no big pain that such CDEs
can address� I wrote more about this in our blog�

and working automation for CDE deployment is provided as a service to them.
There are two ways in which some CDE products fail to support this:

#1
CDE products that are installed on local laptops and don’t support centralised
CDE management and templating. While such products claim to empower deve-
lopers by putting them in charge of CDE management, in the end they once again
leave individual developers to deal with a lot of the complexity that is involved in
configuring and deploying CDEs.

#2
CDE products that support only partial templating. Such CDE products requi-
re developers to conduct manual setup steps after the CDE has been created.
This leaves room for manual error, once again saddles developers with having
to know how to correctly set up their environments, reduces standardisation
and - worst of all - incentivises reusing the same CDE over a long period of time,
leading to the inevitable rise of pet CDEs that are not standardised and hard
to maintain. Unfortunately, the limited nature of the existing CDE configuration
standards (devfile and devcontainer) means that CDE products relying primarily
or only on those standards for CDE templating often fall into this category. I write
in our blog about the limits of devfile and devcontainer as standards for CDE
configuration and explain why so many CDE vendors choose to use their own
configuration format despite the existence of these standards.

Where CDEs are valuable
- and where they are not

Complexity of local development
environments is high

Complexity is effectively
moved away from developers

https://cloudomation.com/en/cloudomation-blog/where-cdes-bring-value-and-where-they-dont/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=where_cdes_bring_value
https://cloudomation.com/en/cloudomation-blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-development-environments-cdes/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=standards_config_cdes
https://cloudomation.com/en/cloudomation-blog/devfile-and-devcontainer-as-standards-for-configuring-cloud-development-environments-cdes/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=standards_config_cdes

Cloudomation - Cloud Development Environments 44

E.g. if CDEs allow them to do things they are not able to do locally, such as
running a build and deploying the application in their CDE, where they have full
visibility and access. There are again two types of CDE products that provide
only limited benefits to developers:

CDEs that don’t aim to support building and running the application as part of
the CDE at all� These are CDEs that only contain an IDE backend and the source
code. These are the parts of the local development environment which typically
work well anyway. There is not a lot of pain associated with running an IDE. On
the other hand, being unable to locally build and deploy the application that a de-
veloper works on means forcing them to work blindly. I wrote about the problem
with developing blindly in our blog as well.

Products that primarily deploy CDEs on developers laptops, where developers
are stuck with limited compute resources.

Under these circumstances, CDEs will be most valuable to developers.
Organisations will also benefit most in terms of time saved for developers,
as well as quality improvements achieved through better standardisation
of development environments.

This does not consider organisational motivations to use CDEs, such
as improving source code security or making it easier to collaborate
with external developers�

Developers gain from using
CDEs

https://cloudomation.com/en/cloudomation-blog/the-problem-with-developing-blindly/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=blindly
https://cloudomation.com/en/cloudomation-blog/the-problem-with-developing-blindly/?pk_campaign=vendor&pk_source=whitepaper&pk_medium=pdf&pk_keyword=blindly

Cloudomation - Cloud Development Environments 45

In my opinion, the most important factors to consider are two:

1� What are your current challenges and does the CDE product help you fix it?
2� What do your production deployments look like?

Answering the first question is often made difficult by the lack of comparable in-
formation available for different CDE products. In my experience, the first step is
to get a list of potential products - like the one here in this whitepaper- and then
to start crossing off those that definitely do not fulfill my requirements. The re-
mainder is hopefully a short list that can be researched or tested in more detail.

The second question is important because a CDE product can be a great op-
portunity to get development and production closer together. For example, if
your software runs in Kubernetes in production but developers don’t want to run
Kubernetes clusters locally and therefore use only Docker to run their application
when developing, moving to a Kubernetes-based CDE can be a big step towards
aligning development and production deployments without increasing the men-
tal load on your developers. On the other hand, if your production deployments
run on VMs, then you should probably choose a VM-based CDE.

How to choose a CDE product

Cloudomation - Cloud Development Environments 46

Cloud Development Environments aim to solve the following problems faced by
developers:

• A lot of time is invested in maintaining development environments
• A lot of knowledge is required to set up and maintain development environ-

ments
• A lot of computing power is required to build, test and run the software that

developers work on

CDEs propose to solve this by providing development environments which are:

• Simple to set up and use - reducing the need for both time and knowledge
required for set up and maintenance of development environments

• Run on powerful servers - reducing the load on local workstations.

 I find it important to repeat these central points because:

• Not all developers face these problems. Many developers work with mature
techstacks for which great tooling is available to run them locally without a lot
of maintenance or deep knowledge required. A lot of software doesn’t require
a lot of computing power. For such developers, the main value propositions of
most CDEs don’t make sense.

• Not all CDE products (and CDE-adjacent products) solve all three of these
problems.

Therefore, when looking for a CDE product, you should be aware which problems
you are actually trying to solve, and if the products you’re looking at actually
solve them.

Summary

Cloudomation - Cloud Development Environments 47

Start with Cloud Development
Environments from Cloudomation�

Contact us

https://cloudomation.com/en/cloudomation-devstack/make-an-appointment-devstack/?pk_campaign=vendor_comparison&pk_source=whitepaper&pk_medium=pdf&pk_keyword=button_contact_us

A brand of Starflows OG
Darnautgasse 6/6, 1120 Vienna, Austria

+43 699 10 69 5915
www.cloudomation.com
info@cloudomation.com

Supported by the Vienna Business Agency.
A fund of the City of Vienna�

https://cloudomation.com/en/?pk_campaign=vendor_comparison&pk_source=whitepaper&pk_medium=pdf&pk_keyword=cloudomation_link
mailto:info%40cloudomation.com?subject=Remote%20Development%20Environments

	Executive Summary
	Disclaimer - who am I and why am I writing this?
	What are CDEs?
	Not all CDEs run in the Cloud
	How does it work?
	Very brief history of CDEs
	IDEs and CDEs
	CDE configuration standards
	Dev Container
	Devfiles
	Nix package manager

	Main differences between CDE products
	USP
	Customizability: What can run on the CDE
	Containers vs. VMs
	Configuration
	Compatible IDEs
	CLI
	Source Code Security
	SaaS and on-prem
	Pricing model
	Approx. price / dev / month
	Initial release
	Vendor HQ
	Comment
	Excluded: version control

	Feature comparison table
	List of vendors
	Amazon CodeCatalyst Dev Environments
	Cloudomation DevStack
	Coder
	Codesandbox
	CPS1
	Daytona
	DevPod by Loft Labs
	DevZero
	Eclipse Che
	GCPWorkstations
	Github Codespaces
	Gitlab Workspaces
	Gitpod
	IDX by Google
	JetBrains CodeCanvas
	Microsoft Dev Box
	Okteto
	Red Hat OpenShift Dev Spaces
	Strong Network

	Discontinued CDE products
	Hocus
	Koding
	Nimbus

	Honorary mentions
	Stackblitz
	JetBrains Space
	Devbox by Jetpack

	Where CDEs are valuable - and where they are not
	How to choose a CDE product
	Summary

