98 lines
2.5 KiB
Go
98 lines
2.5 KiB
Go
![]() |
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|||
|
// Use of this source code is governed by a BSD-style
|
|||
|
// license that can be found in the LICENSE file.
|
|||
|
|
|||
|
package gonum
|
|||
|
|
|||
|
import (
|
|||
|
"gonum.org/v1/gonum/blas"
|
|||
|
"gonum.org/v1/gonum/lapack"
|
|||
|
)
|
|||
|
|
|||
|
// Dgelqf computes the LQ factorization of the m×n matrix A using a blocked
|
|||
|
// algorithm. See the documentation for Dgelq2 for a description of the
|
|||
|
// parameters at entry and exit.
|
|||
|
//
|
|||
|
// work is temporary storage, and lwork specifies the usable memory length.
|
|||
|
// At minimum, lwork >= m, and this function will panic otherwise.
|
|||
|
// Dgelqf is a blocked LQ factorization, but the block size is limited
|
|||
|
// by the temporary space available. If lwork == -1, instead of performing Dgelqf,
|
|||
|
// the optimal work length will be stored into work[0].
|
|||
|
//
|
|||
|
// tau must have length at least min(m,n), and this function will panic otherwise.
|
|||
|
func (impl Implementation) Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
|
|||
|
switch {
|
|||
|
case m < 0:
|
|||
|
panic(mLT0)
|
|||
|
case n < 0:
|
|||
|
panic(nLT0)
|
|||
|
case lda < max(1, n):
|
|||
|
panic(badLdA)
|
|||
|
case lwork < max(1, m) && lwork != -1:
|
|||
|
panic(badLWork)
|
|||
|
case len(work) < max(1, lwork):
|
|||
|
panic(shortWork)
|
|||
|
}
|
|||
|
|
|||
|
k := min(m, n)
|
|||
|
if k == 0 {
|
|||
|
work[0] = 1
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
nb := impl.Ilaenv(1, "DGELQF", " ", m, n, -1, -1)
|
|||
|
if lwork == -1 {
|
|||
|
work[0] = float64(m * nb)
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
if len(a) < (m-1)*lda+n {
|
|||
|
panic(shortA)
|
|||
|
}
|
|||
|
if len(tau) < k {
|
|||
|
panic(shortTau)
|
|||
|
}
|
|||
|
|
|||
|
// Find the optimal blocking size based on the size of available memory
|
|||
|
// and optimal machine parameters.
|
|||
|
nbmin := 2
|
|||
|
var nx int
|
|||
|
iws := m
|
|||
|
if 1 < nb && nb < k {
|
|||
|
nx = max(0, impl.Ilaenv(3, "DGELQF", " ", m, n, -1, -1))
|
|||
|
if nx < k {
|
|||
|
iws = m * nb
|
|||
|
if lwork < iws {
|
|||
|
nb = lwork / m
|
|||
|
nbmin = max(2, impl.Ilaenv(2, "DGELQF", " ", m, n, -1, -1))
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
ldwork := nb
|
|||
|
// Computed blocked LQ factorization.
|
|||
|
var i int
|
|||
|
if nbmin <= nb && nb < k && nx < k {
|
|||
|
for i = 0; i < k-nx; i += nb {
|
|||
|
ib := min(k-i, nb)
|
|||
|
impl.Dgelq2(ib, n-i, a[i*lda+i:], lda, tau[i:], work)
|
|||
|
if i+ib < m {
|
|||
|
impl.Dlarft(lapack.Forward, lapack.RowWise, n-i, ib,
|
|||
|
a[i*lda+i:], lda,
|
|||
|
tau[i:],
|
|||
|
work, ldwork)
|
|||
|
impl.Dlarfb(blas.Right, blas.NoTrans, lapack.Forward, lapack.RowWise,
|
|||
|
m-i-ib, n-i, ib,
|
|||
|
a[i*lda+i:], lda,
|
|||
|
work, ldwork,
|
|||
|
a[(i+ib)*lda+i:], lda,
|
|||
|
work[ib*ldwork:], ldwork)
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
// Perform unblocked LQ factorization on the remainder.
|
|||
|
if i < k {
|
|||
|
impl.Dgelq2(m-i, n-i, a[i*lda+i:], lda, tau[i:], work)
|
|||
|
}
|
|||
|
work[0] = float64(iws)
|
|||
|
}
|