Update go dependencies

This commit is contained in:
Manuel Alejandro de Brito Fontes 2020-03-24 10:44:24 -03:00
parent a46126a034
commit 3eafaa35a1
1108 changed files with 32555 additions and 83490 deletions

65
go.mod
View file

@ -15,6 +15,7 @@ require (
github.com/json-iterator/go v1.1.9
github.com/k0kubun/colorstring v0.0.0-20150214042306-9440f1994b88 // indirect
github.com/kylelemons/godebug v0.0.0-20170820004349-d65d576e9348
github.com/mattn/go-colorable v0.1.2 // indirect
github.com/mitchellh/go-ps v1.0.0
github.com/mitchellh/hashstructure v1.0.0
github.com/mitchellh/mapstructure v1.1.2
@ -38,45 +39,45 @@ require (
github.com/yudai/pp v2.0.1+incompatible // indirect
github.com/zakjan/cert-chain-resolver v0.0.0-20180703112424-6076e1ded272
golang.org/x/net v0.0.0-20191004110552-13f9640d40b9
google.golang.org/grpc v1.23.1
google.golang.org/grpc v1.26.0
gopkg.in/fsnotify/fsnotify.v1 v1.4.7
gopkg.in/gavv/httpexpect.v2 v2.0.0
gopkg.in/go-playground/assert.v1 v1.2.1 // indirect
gopkg.in/go-playground/pool.v3 v3.1.1
k8s.io/api v0.17.3
k8s.io/apiextensions-apiserver v0.17.3
k8s.io/apimachinery v0.17.3
k8s.io/apiserver v0.17.3
k8s.io/cli-runtime v0.17.3
k8s.io/client-go v0.17.3
k8s.io/code-generator v0.17.3
k8s.io/component-base v0.17.33
k8s.io/api v0.18.0
k8s.io/apiextensions-apiserver v0.18.0
k8s.io/apimachinery v0.18.0
k8s.io/apiserver v0.18.0
k8s.io/cli-runtime v0.18.0
k8s.io/client-go v0.18.0
k8s.io/code-generator v0.18.0
k8s.io/component-base v0.18.0
k8s.io/klog v1.0.0
k8s.io/kubernetes v1.17.3
k8s.io/kubernetes v1.18.0
pault.ag/go/sniff v0.0.0-20200207005214-cf7e4d167732
sigs.k8s.io/controller-runtime v0.4.0
sigs.k8s.io/controller-runtime v0.5.1-0.20200327213554-2d4c4877f906
)
replace (
k8s.io/api => k8s.io/api v0.17.3
k8s.io/apiextensions-apiserver => k8s.io/apiextensions-apiserver v0.17.3
k8s.io/apimachinery => k8s.io/apimachinery v0.17.3
k8s.io/apiserver => k8s.io/apiserver v0.17.3
k8s.io/cli-runtime => k8s.io/cli-runtime v0.17.3
k8s.io/client-go => k8s.io/client-go v0.17.3
k8s.io/cloud-provider => k8s.io/cloud-provider v0.17.3
k8s.io/cluster-bootstrap => k8s.io/cluster-bootstrap v0.17.3
k8s.io/code-generator => k8s.io/code-generator v0.17.3
k8s.io/component-base => k8s.io/component-base v0.17.3
k8s.io/cri-api => k8s.io/cri-api v0.17.3
k8s.io/csi-translation-lib => k8s.io/csi-translation-lib v0.17.3
k8s.io/kube-aggregator => k8s.io/kube-aggregator v0.17.3
k8s.io/kube-controller-manager => k8s.io/kube-controller-manager v0.17.3
k8s.io/kube-proxy => k8s.io/kube-proxy v0.17.3
k8s.io/kube-scheduler => k8s.io/kube-scheduler v0.17.3
k8s.io/kubectl => k8s.io/kubectl v0.17.3
k8s.io/kubelet => k8s.io/kubelet v0.17.3
k8s.io/legacy-cloud-providers => k8s.io/legacy-cloud-providers v0.17.3
k8s.io/metrics => k8s.io/metrics v0.17.3
k8s.io/sample-apiserver => k8s.io/sample-apiserver v0.17.3
k8s.io/api => k8s.io/api v0.18.0
k8s.io/apiextensions-apiserver => k8s.io/apiextensions-apiserver v0.18.0
k8s.io/apimachinery => k8s.io/apimachinery v0.18.0
k8s.io/apiserver => k8s.io/apiserver v0.18.0
k8s.io/cli-runtime => k8s.io/cli-runtime v0.18.0
k8s.io/client-go => k8s.io/client-go v0.18.0
k8s.io/cloud-provider => k8s.io/cloud-provider v0.18.0
k8s.io/cluster-bootstrap => k8s.io/cluster-bootstrap v0.18.0
k8s.io/code-generator => k8s.io/code-generator v0.18.0
k8s.io/component-base => k8s.io/component-base v0.18.0
k8s.io/cri-api => k8s.io/cri-api v0.18.0
k8s.io/csi-translation-lib => k8s.io/csi-translation-lib v0.18.0
k8s.io/kube-aggregator => k8s.io/kube-aggregator v0.18.0
k8s.io/kube-controller-manager => k8s.io/kube-controller-manager v0.18.0
k8s.io/kube-proxy => k8s.io/kube-proxy v0.18.0
k8s.io/kube-scheduler => k8s.io/kube-scheduler v0.18.0
k8s.io/kubectl => k8s.io/kubectl v0.18.0
k8s.io/kubelet => k8s.io/kubelet v0.18.0
k8s.io/legacy-cloud-providers => k8s.io/legacy-cloud-providers v0.18.0
k8s.io/metrics => k8s.io/metrics v0.18.0
k8s.io/sample-apiserver => k8s.io/sample-apiserver v0.18.0
)

174
go.sum
View file

@ -27,7 +27,7 @@ github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym
github.com/GoogleCloudPlatform/k8s-cloud-provider v0.0.0-20190822182118-27a4ced34534/go.mod h1:iroGtC8B3tQiqtds1l+mgk/BBOrxbqjH+eUfFQYRc14=
github.com/JeffAshton/win_pdh v0.0.0-20161109143554-76bb4ee9f0ab/go.mod h1:3VYc5hodBMJ5+l/7J4xAyMeuM2PNuepvHlGs8yilUCA=
github.com/MakeNowJust/heredoc v0.0.0-20170808103936-bb23615498cd/go.mod h1:64YHyfSL2R96J44Nlwm39UHepQbyR5q10x7iYa1ks2E=
github.com/Microsoft/go-winio v0.4.11/go.mod h1:VhR8bwka0BXejwEJY73c50VrPtXAaKcyvVC4A4RozmA=
github.com/Microsoft/go-winio v0.4.14/go.mod h1:qXqCSQ3Xa7+6tgxaGTIe4Kpcdsi+P8jBhyzoq1bpyYA=
github.com/Microsoft/hcsshim v0.0.0-20190417211021-672e52e9209d/go.mod h1:Op3hHsoHPAvb6lceZHDtd9OkTew38wNoXnJs8iY7rUg=
github.com/NYTimes/gziphandler v0.0.0-20170623195520-56545f4a5d46/go.mod h1:3wb06e3pkSAbeQ52E9H9iFoQsEEwGN64994WTCIhntQ=
github.com/OneOfOne/xxhash v1.2.2/go.mod h1:HSdplMjZKSmBqAxg5vPj2TmRDmfkzw+cTzAElWljhcU=
@ -46,6 +46,7 @@ github.com/StackExchange/wmi v0.0.0-20180116203802-5d049714c4a6/go.mod h1:3eOhrU
github.com/agnivade/levenshtein v1.0.1/go.mod h1:CURSv5d9Uaml+FovSIICkLbAUZ9S4RqaHDIsdSBg7lM=
github.com/ajg/form v1.5.1 h1:t9c7v8JUKu/XxOGBU0yjNpaMloxGEJhUkqFRq0ibGeU=
github.com/ajg/form v1.5.1/go.mod h1:uL1WgH+h2mgNtvBq0339dVnzXdBETtL2LeUXaIv25UY=
github.com/ajstarks/svgo v0.0.0-20180226025133-644b8db467af/go.mod h1:K08gAheRH3/J6wwsYMMT4xOr94bZjxIelGM0+d/wbFw=
github.com/alecthomas/template v0.0.0-20160405071501-a0175ee3bccc/go.mod h1:LOuyumcjzFXgccqObfd/Ljyb9UuFJ6TxHnclSeseNhc=
github.com/alecthomas/template v0.0.0-20190718012654-fb15b899a751/go.mod h1:LOuyumcjzFXgccqObfd/Ljyb9UuFJ6TxHnclSeseNhc=
github.com/alecthomas/units v0.0.0-20151022065526-2efee857e7cf/go.mod h1:ybxpYRFXyAe+OPACYpWeL0wqObRcbAqCMya13uyzqw0=
@ -59,7 +60,7 @@ github.com/armon/go-proxyproto v0.0.0-20200108142055-f0b8253b1507/go.mod h1:QmP9
github.com/asaskevich/govalidator v0.0.0-20180720115003-f9ffefc3facf/go.mod h1:lB+ZfQJz7igIIfQNfa7Ml4HSf2uFQQRzpGGRXenZAgY=
github.com/asaskevich/govalidator v0.0.0-20190424111038-f61b66f89f4a/go.mod h1:lB+ZfQJz7igIIfQNfa7Ml4HSf2uFQQRzpGGRXenZAgY=
github.com/auth0/go-jwt-middleware v0.0.0-20170425171159-5493cabe49f7/go.mod h1:LWMyo4iOLWXHGdBki7NIht1kHru/0wM179h+d3g8ATM=
github.com/aws/aws-sdk-go v1.16.26/go.mod h1:KmX6BPdI08NWTb3/sm4ZGu5ShLoqVDhKgpiN924inxo=
github.com/aws/aws-sdk-go v1.28.2/go.mod h1:KmX6BPdI08NWTb3/sm4ZGu5ShLoqVDhKgpiN924inxo=
github.com/bazelbuild/bazel-gazelle v0.18.2/go.mod h1:D0ehMSbS+vesFsLGiD6JXu3mVEzOlfUl8wNnq+x/9p0=
github.com/bazelbuild/bazel-gazelle v0.19.1-0.20191105222053-70208cbdc798/go.mod h1:rPwzNHUqEzngx1iVBfO/2X2npKaT3tqPqqHW6rVsn/A=
github.com/bazelbuild/buildtools v0.0.0-20190731111112-f720930ceb60/go.mod h1:5JP0TXzWDHXv8qvxRC4InIazwdyDseBDbzESUMKk1yU=
@ -79,14 +80,16 @@ github.com/boltdb/bolt v1.3.1/go.mod h1:clJnj/oiGkjum5o1McbSZDSLxVThjynRyGBgiAx2
github.com/bradfitz/go-smtpd v0.0.0-20170404230938-deb6d6237625/go.mod h1:HYsPBTaaSFSlLx/70C2HPIMNZpVV8+vt/A+FMnYP11g=
github.com/caddyserver/caddy v1.0.3/go.mod h1:G+ouvOY32gENkJC+jhgl62TyhvqEsFaDiZ4uw0RzP1E=
github.com/cenkalti/backoff v2.1.1+incompatible/go.mod h1:90ReRw6GdpyfrHakVjL/QHaoyV4aDUVVkXQJJJ3NXXM=
github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA12rnyqOA5BBL4O983OfeGPqjHWSTneU=
github.com/cespare/prettybench v0.0.0-20150116022406-03b8cfe5406c/go.mod h1:Xe6ZsFhtM8HrDku0pxJ3/Lr51rwykrzgFwpmTzleatY=
github.com/cespare/xxhash v1.1.0 h1:a6HrQnmkObjyL+Gs60czilIUGqrzKutQD6XZog3p+ko=
github.com/cespare/xxhash v1.1.0/go.mod h1:XrSqR1VqqWfGrhpAt58auRo0WTKS1nRRg3ghfAqPWnc=
github.com/cespare/xxhash/v2 v2.1.1 h1:6MnRN8NT7+YBpUIWxHtefFZOKTAPgGjpQSxqLNn0+qY=
github.com/cespare/xxhash/v2 v2.1.1/go.mod h1:VGX0DQ3Q6kWi7AoAeZDth3/j3BFtOZR5XLFGgcrjCOs=
github.com/chai2010/gettext-go v0.0.0-20160711120539-c6fed771bfd5/go.mod h1:/iP1qXHoty45bqomnu2LM+VVyAEdWN+vtSHGlQgyxbw=
github.com/checkpoint-restore/go-criu v0.0.0-20190109184317-bdb7599cd87b/go.mod h1:TrMrLQfeENAPYPRsJuq3jsqdlRh3lvi6trTZJG8+tho=
github.com/checkpoint-restore/go-criu v0.0.0-20181120144056-17b0214f6c48/go.mod h1:TrMrLQfeENAPYPRsJuq3jsqdlRh3lvi6trTZJG8+tho=
github.com/cheekybits/genny v0.0.0-20170328200008-9127e812e1e9/go.mod h1:+tQajlRqAUrPI7DOSpB0XAqZYtQakVtB7wXkRAgjxjQ=
github.com/cilium/ebpf v0.0.0-20191025125908-95b36a581eed/go.mod h1:MA5e5Lr8slmEg9bt0VpxxWqJlO4iwu3FBdHUzV7wQVg=
github.com/client9/misspell v0.3.4/go.mod h1:qj6jICC3Q7zFZvVWo7KLAzC3yx5G7kyvSDkc90ppPyw=
github.com/clusterhq/flocker-go v0.0.0-20160920122132-2b8b7259d313/go.mod h1:P1wt9Z3DP8O6W3rvwCt0REIlshg1InHImaLW0t3ObY0=
github.com/cockroachdb/datadriven v0.0.0-20190809214429-80d97fb3cbaa/go.mod h1:zn76sxSg3SzpJ0PPJaLDCu+Bu0Lg3sKTORVIj19EIF8=
@ -96,7 +99,7 @@ github.com/containerd/console v0.0.0-20170925154832-84eeaae905fa/go.mod h1:Tj/on
github.com/containerd/containerd v1.0.2/go.mod h1:bC6axHOhabU15QhwfG7w5PipXdVtMXFTttgp+kVtyUA=
github.com/containerd/typeurl v0.0.0-20190228175220-2a93cfde8c20/go.mod h1:Cm3kwCdlkCfMSHURc+r6fwoGH6/F1hH3S4sg0rLFWPc=
github.com/containernetworking/cni v0.7.1/go.mod h1:LGwApLUm2FpoOfxTDEeq8T9ipbpZ61X79hmU3w8FmsY=
github.com/coredns/corefile-migration v1.0.4/go.mod h1:OFwBp/Wc9dJt5cAZzHWMNhK1r5L0p0jDwIBc6j8NC8E=
github.com/coredns/corefile-migration v1.0.6/go.mod h1:OFwBp/Wc9dJt5cAZzHWMNhK1r5L0p0jDwIBc6j8NC8E=
github.com/coreos/bbolt v1.3.2/go.mod h1:iRUV2dpdMOn7Bo10OQBFzIJO9kkE559Wcmn+qkEiiKk=
github.com/coreos/etcd v3.3.10+incompatible/go.mod h1:uF7uidLiAD3TWHmW31ZFd/JWoc32PjwdhPthX9715RE=
github.com/coreos/go-etcd v2.0.0+incompatible/go.mod h1:Jez6KQU2B/sWsbdaef3ED8NzMklzPG4d5KIOhIy30Tk=
@ -113,7 +116,6 @@ github.com/cpuguy83/go-md2man v1.0.10/go.mod h1:SmD6nW6nTyfqj6ABTjUi3V3JVMnlJmwc
github.com/cpuguy83/go-md2man/v2 v2.0.0/go.mod h1:maD7wRr/U5Z6m/iR4s+kqSMx2CaBsrgA7czyZG/E6dU=
github.com/creack/pty v1.1.7/go.mod h1:lj5s0c3V2DBrqTV7llrYr5NG6My20zk30Fl46Y7DoTY=
github.com/cyphar/filepath-securejoin v0.2.2/go.mod h1:FpkQEhXnPnOthhzymB7CGsFk2G9VLXONKD9G7QGMM+4=
github.com/davecgh/go-spew v0.0.0-20151105211317-5215b55f46b2/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
@ -130,7 +132,7 @@ github.com/docker/go-units v0.3.3 h1:Xk8S3Xj5sLGlG5g67hJmYMmUgXv5N4PhkjJHHqrwnTk
github.com/docker/go-units v0.3.3/go.mod h1:fgPhTUdO+D/Jk86RDLlptpiXQzgHJF7gydDDbaIK4Dk=
github.com/docker/go-units v0.4.0 h1:3uh0PgVws3nIA0Q+MwDC8yjEPf9zjRfZZWXZYDct3Tw=
github.com/docker/go-units v0.4.0/go.mod h1:fgPhTUdO+D/Jk86RDLlptpiXQzgHJF7gydDDbaIK4Dk=
github.com/docker/libnetwork v0.8.0-dev.2.0.20190624125649-f0e46a78ea34/go.mod h1:93m0aTqz6z+g32wla4l4WxTrdtvBRmVzYRkYvasA5Z8=
github.com/docker/libnetwork v0.8.0-dev.2.0.20190925143933-c8a5fca4a652/go.mod h1:93m0aTqz6z+g32wla4l4WxTrdtvBRmVzYRkYvasA5Z8=
github.com/docker/spdystream v0.0.0-20160310174837-449fdfce4d96 h1:cenwrSVm+Z7QLSV/BsnenAOcDXdX4cMv4wP0B/5QbPg=
github.com/docker/spdystream v0.0.0-20160310174837-449fdfce4d96/go.mod h1:Qh8CwZgvJUkLughtfhJv5dyTYa91l1fOUCrgjqmcifM=
github.com/docopt/docopt-go v0.0.0-20180111231733-ee0de3bc6815/go.mod h1:WwZ+bS3ebgob9U8Nd0kOddGdZWjyMGR8Wziv+TBNwSE=
@ -141,12 +143,14 @@ github.com/eapache/channels v1.1.0/go.mod h1:jMm2qB5Ubtg9zLd+inMZd2/NUvXgzmWXsDa
github.com/eapache/queue v1.1.0 h1:YOEu7KNc61ntiQlcEeUIoDTJ2o8mQznoNvUhiigpIqc=
github.com/eapache/queue v1.1.0/go.mod h1:6eCeP0CKFpHLu8blIFXhExK/dRa7WDZfr6jVFPTqq+I=
github.com/ekalinin/github-markdown-toc v0.0.0-20190514155158-83fadb60a7f1/go.mod h1:XfZS1iyC28CnllR54Ou2Ero6qs4Rmn7GpVumNSj1DZo=
github.com/elazarl/goproxy v0.0.0-20170405201442-c4fc26588b6e h1:p1yVGRW3nmb85p1Sh1ZJSDm4A4iKLS5QNbvUHMgGu/M=
github.com/elazarl/goproxy v0.0.0-20170405201442-c4fc26588b6e/go.mod h1:/Zj4wYkgs4iZTTu3o/KG3Itv/qCCa8VVMlb3i9OVuzc=
github.com/elazarl/goproxy v0.0.0-20180725130230-947c36da3153 h1:yUdfgN0XgIJw7foRItutHYUIhlcKzcSf5vDpdhQAKTc=
github.com/elazarl/goproxy v0.0.0-20180725130230-947c36da3153/go.mod h1:/Zj4wYkgs4iZTTu3o/KG3Itv/qCCa8VVMlb3i9OVuzc=
github.com/emicklei/go-restful v0.0.0-20170410110728-ff4f55a20633 h1:H2pdYOb3KQ1/YsqVWoWNLQO+fusocsw354rqGTZtAgw=
github.com/emicklei/go-restful v0.0.0-20170410110728-ff4f55a20633/go.mod h1:otzb+WCGbkyDHkqmQmT5YD2WR4BBwUdeQoFo8l/7tVs=
github.com/emicklei/go-restful v2.9.5+incompatible h1:spTtZBk5DYEvbxMVutUuTyh1Ao2r4iyvLdACqsl/Ljk=
github.com/emicklei/go-restful v2.9.5+incompatible/go.mod h1:otzb+WCGbkyDHkqmQmT5YD2WR4BBwUdeQoFo8l/7tVs=
github.com/envoyproxy/go-control-plane v0.9.1-0.20191026205805-5f8ba28d4473/go.mod h1:YTl/9mNaCwkRvm6d1a2C3ymFceY/DCBVvsKhRF0iEA4=
github.com/envoyproxy/protoc-gen-validate v0.1.0/go.mod h1:iSmxcyjqTsJpI2R4NaDN7+kN2VEUnK/pcBlmesArF7c=
github.com/euank/go-kmsg-parser v2.0.0+incompatible/go.mod h1:MhmAMZ8V4CYH4ybgdRwPr2TU5ThnS43puaKEMpja1uw=
github.com/evanphx/json-patch v4.2.0+incompatible h1:fUDGZCv/7iAN7u0puUVhvKCcsR6vRfwrJatElLBEf0I=
github.com/evanphx/json-patch v4.2.0+incompatible/go.mod h1:50XU6AFN0ol/bzJsmQLiYLvXMP4fmwYFNcr97nuDLSk=
@ -161,6 +165,7 @@ github.com/fatih/color v1.7.0/go.mod h1:Zm6kSWBoL9eyXnKyktHP6abPY2pDugNf5Kwzbycv
github.com/fatih/structs v1.1.0 h1:Q7juDM0QtcnhCpeyLGQKyg4TOIghuNXrkL32pHAUMxo=
github.com/fatih/structs v1.1.0/go.mod h1:9NiDSp5zOcgEDl+j00MP/WkGVPOlPRLejGD8Ga6PJ7M=
github.com/flynn/go-shlex v0.0.0-20150515145356-3f9db97f8568/go.mod h1:xEzjJPgXI435gkrCt3MPfRiAkVrwSbHsst4LCFVfpJc=
github.com/fogleman/gg v1.2.1-0.20190220221249-0403632d5b90/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k=
github.com/fsnotify/fsnotify v1.4.7 h1:IXs+QLmnXW2CcXuY+8Mzv/fWEsPGWxqefPtCP5CnV9I=
github.com/fsnotify/fsnotify v1.4.7/go.mod h1:jwhsz4b93w/PPRr/qN1Yymfu8t87LnFCMoQvtojpjFo=
github.com/fullsailor/pkcs7 v0.0.0-20190404230743-d7302db945fa h1:RDBNVkRviHZtvDvId8XSGPu3rmpmSe+wKRcEWNgsfWU=
@ -255,14 +260,13 @@ github.com/godbus/dbus v0.0.0-20181101234600-2ff6f7ffd60f/go.mod h1:/YcGZj5zSblf
github.com/gogo/protobuf v1.1.1 h1:72R+M5VuhED/KujmZVcIquuo8mBgX4oVda//DQb3PXo=
github.com/gogo/protobuf v1.1.1/go.mod h1:r8qH/GZQm5c6nD/R0oafs1akxWv10x8SbQlK7atdtwQ=
github.com/gogo/protobuf v1.2.1/go.mod h1:hp+jE20tsWTFYpLwKvXlhS1hjn+gTNwPg2I6zVXpSg4=
github.com/gogo/protobuf v1.2.2-0.20190723190241-65acae22fc9d h1:3PaI8p3seN09VjbTYC/QWlUZdZ1qS1zGjy7LH2Wt07I=
github.com/gogo/protobuf v1.2.2-0.20190723190241-65acae22fc9d/go.mod h1:SlYgWuQ5SjCEi6WLHjHCa1yvBfUnHcTbrrZtXPKa29o=
github.com/gogo/protobuf v1.3.1 h1:DqDEcV5aeaTmdFBePNpYsp3FlcVH/2ISVVM9Qf8PSls=
github.com/gogo/protobuf v1.3.1/go.mod h1:SlYgWuQ5SjCEi6WLHjHCa1yvBfUnHcTbrrZtXPKa29o=
github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k=
github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b h1:VKtxabqXZkF25pY9ekfRL6a582T4P37/31XEstQ5p58=
github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b/go.mod h1:SBH7ygxi8pfUlaOkMMuAQtPIUF8ecWP5IEl/CR7VP2Q=
github.com/golang/groupcache v0.0.0-20160516000752-02826c3e7903 h1:LbsanbbD6LieFkXbj9YNNBupiGHJgFeLpO0j0Fza1h8=
github.com/golang/groupcache v0.0.0-20160516000752-02826c3e7903/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc=
github.com/golang/groupcache v0.0.0-20180513044358-24b0969c4cb7 h1:u4bArs140e9+AfE52mFHOXVFnOSBJBRlzTHrOPLOIhE=
github.com/golang/groupcache v0.0.0-20180513044358-24b0969c4cb7/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc=
github.com/golang/groupcache v0.0.0-20190129154638-5b532d6fd5ef h1:veQD95Isof8w9/WXiA+pa3tz3fJXkt5B7QaRBrM62gk=
github.com/golang/groupcache v0.0.0-20190129154638-5b532d6fd5ef/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc=
github.com/golang/mock v1.0.0/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A=
@ -270,8 +274,8 @@ github.com/golang/mock v1.1.1 h1:G5FRp8JnTd7RQH5kemVNlMeyXQAztQ3mOWV95KxsXH8=
github.com/golang/mock v1.1.1/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A=
github.com/golang/mock v1.2.0 h1:28o5sBqPkBsMGnC6b4MvE2TzSr5/AT4c/1fLqVGIwlk=
github.com/golang/mock v1.2.0/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A=
github.com/golang/mock v1.3.1/go.mod h1:sBzyDLLjw3U8JLTeZvSv8jJB+tU5PVekmnlKIyFUx0Y=
github.com/golang/protobuf v0.0.0-20161109072736-4bd1920723d7/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.0.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.1.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.2.0 h1:P3YflyNX/ehuJFLhxviNdFxQPkGK5cDcApsge1SqnvM=
github.com/golang/protobuf v1.2.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
@ -315,9 +319,9 @@ github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
github.com/google/go-github v17.0.0+incompatible/go.mod h1:zLgOLi98H3fifZn+44m+umXrS52loVEgC2AApnigrVQ=
github.com/google/go-querystring v1.0.0 h1:Xkwi/a1rcvNg1PPYe5vI8GbeBY/jrVuDX5ASuANWTrk=
github.com/google/go-querystring v1.0.0/go.mod h1:odCYkC5MyYFN7vkCjXpyrEuKhc/BUO6wN/zVPAxq5ck=
github.com/google/gofuzz v0.0.0-20161122191042-44d81051d367/go.mod h1:HP5RmnzzSNb993RKQDq4+1A4ia9nllfqcQFTQJedwGI=
github.com/google/gofuzz v1.0.0 h1:A8PeW59pxE9IoFRqBp37U+mSNaQoZ46F1f0f863XSXw=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/gofuzz v1.1.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/martian v2.1.0+incompatible/go.mod h1:9I4somxYTbIHy5NJKHRl3wXiIaQGbYVAs8BPL6v8lEs=
github.com/google/pprof v0.0.0-20181206194817-3ea8567a2e57/go.mod h1:zfwlbNMJ+OItoe0UupaVj+oy1omPYYDuagoSzA8v9mc=
github.com/google/renameio v0.1.0/go.mod h1:KWCgfxg9yswjAJkECMjeO8J8rahYeXnNhOm40UhjYkI=
@ -327,6 +331,7 @@ github.com/google/uuid v1.1.1/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+
github.com/googleapis/gax-go/v2 v2.0.4/go.mod h1:0Wqv26UfaUD9n4G6kQubkQ+KchISgw+vpHVxEJEs9eg=
github.com/googleapis/gnostic v0.0.0-20170729233727-0c5108395e2d h1:7XGaL1e6bYS1yIonGp9761ExpPPV1ui0SAC59Yube9k=
github.com/googleapis/gnostic v0.0.0-20170729233727-0c5108395e2d/go.mod h1:sJBsCZ4ayReDTBIg8b9dl28c5xFWyhBTVRp3pOg5EKY=
github.com/googleapis/gnostic v0.1.0/go.mod h1:sJBsCZ4ayReDTBIg8b9dl28c5xFWyhBTVRp3pOg5EKY=
github.com/googleapis/gnostic v0.3.1 h1:WeAefnSUHlBb0iJKwxFDZdbfGwkd7xRNuV+IpXMJhYk=
github.com/googleapis/gnostic v0.3.1/go.mod h1:on+2t9HRStVgn95RSsFWFz+6Q0Snyqv1awfrALZdbtU=
github.com/gophercloud/gophercloud v0.1.0 h1:P/nh25+rzXouhytV2pUHBb65fnds26Ghl8/391+sT5o=
@ -372,7 +377,6 @@ github.com/jellevandenhooff/dkim v0.0.0-20150330215556-f50fe3d243e1/go.mod h1:E0
github.com/jimstudt/http-authentication v0.0.0-20140401203705-3eca13d6893a/go.mod h1:wK6yTYYcgjHE1Z1QtXACPDjcFJyBskHEdagmnq3vsP8=
github.com/jmespath/go-jmespath v0.0.0-20180206201540-c2b33e8439af/go.mod h1:Nht3zPeWKUH0NzdCt2Blrr5ys8VGpn0CEB0cQHVjt7k=
github.com/jonboulle/clockwork v0.1.0/go.mod h1:Ii8DK3G1RaLaWxj9trq07+26W01tbo22gdxWY5EU2bo=
github.com/json-iterator/go v0.0.0-20180612202835-f2b4162afba3/go.mod h1:+SdeFBvtyEkXs7REEP0seUULqWtbJapLOCVDaaPEHmU=
github.com/json-iterator/go v1.1.6 h1:MrUvLMLTMxbqFJ9kzlvat/rYZqZnW3u4wkLzWTaFwKs=
github.com/json-iterator/go v1.1.6/go.mod h1:+SdeFBvtyEkXs7REEP0seUULqWtbJapLOCVDaaPEHmU=
github.com/json-iterator/go v1.1.7 h1:KfgG9LzI+pYjr4xvmz/5H4FXjokeP+rlHLhv3iH62Fo=
@ -385,6 +389,7 @@ github.com/jstemmer/go-junit-report v0.0.0-20190106144839-af01ea7f8024/go.mod h1
github.com/jtolds/gls v4.20.0+incompatible h1:xdiiI2gbIgH/gLH7ADydsJ1uDOEzR8yvV7C0MuV77Wo=
github.com/jtolds/gls v4.20.0+incompatible/go.mod h1:QJZ7F/aHp+rZTRtaJ1ow/lLfFfVYBRgL+9YlvaHOwJU=
github.com/julienschmidt/httprouter v1.2.0/go.mod h1:SYymIcj16QtmaHHD7aYtjjsJG7VTCxuUUipMqKk8s4w=
github.com/jung-kurt/gofpdf v1.0.3-0.20190309125859-24315acbbda5/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
github.com/k0kubun/colorstring v0.0.0-20150214042306-9440f1994b88 h1:uC1QfSlInpQF+M0ao65imhwqKnz3Q2z/d8PWZRMQvDM=
github.com/k0kubun/colorstring v0.0.0-20150214042306-9440f1994b88/go.mod h1:3w7q1U84EfirKl04SVQ/s7nPm1ZPhiXd34z40TNz36k=
github.com/karrick/godirwalk v1.7.5/go.mod h1:2c9FRhkDxdIbgkOnCEvnSWs71Bhugbl46shStcFDJ34=
@ -435,8 +440,10 @@ github.com/mailru/easyjson v0.7.0/go.mod h1:KAzv3t3aY1NaHWoQz1+4F1ccyAH66Jk7yos7
github.com/marten-seemann/qtls v0.2.3/go.mod h1:xzjG7avBwGGbdZ8dTGxlBnLArsVKLvwmjgmPuiQEcYk=
github.com/mattn/go-colorable v0.0.9 h1:UVL0vNpWh04HeJXV0KLcaT7r06gOH2l4OW6ddYRUIY4=
github.com/mattn/go-colorable v0.0.9/go.mod h1:9vuHe8Xs5qXnSaW/c/ABM9alt+Vo+STaOChaDxuIBZU=
github.com/mattn/go-colorable v0.1.2/go.mod h1:U0ppj6V5qS13XJ6of8GYAs25YV2eR4EVcfRqFIhoBtE=
github.com/mattn/go-isatty v0.0.3/go.mod h1:M+lRXTBqGeGNdLjl/ufCoiOlB5xdOkqRJdNxMWT7Zi4=
github.com/mattn/go-isatty v0.0.4/go.mod h1:M+lRXTBqGeGNdLjl/ufCoiOlB5xdOkqRJdNxMWT7Zi4=
github.com/mattn/go-isatty v0.0.8/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s=
github.com/mattn/go-isatty v0.0.9 h1:d5US/mDsogSGW37IV293h//ZFaeajb69h+EHFsv2xGg=
github.com/mattn/go-isatty v0.0.9/go.mod h1:YNRxwqDuOph6SZLI9vUUz6OYw3QyUt7WiY2yME+cCiQ=
github.com/mattn/go-runewidth v0.0.2/go.mod h1:LwmH8dsx7+W8Uxz3IHJYH5QSwggIsqBzpuz5H//U1FU=
@ -467,12 +474,11 @@ github.com/mmarkdown/mmark v2.0.40+incompatible/go.mod h1:Uvmoz7tvsWpr7bMVxIpqZP
github.com/modern-go/concurrent v0.0.0-20180228061459-e0a39a4cb421/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd h1:TRLaZ9cD/w8PVh93nsPXa1VrQ6jlwL5oN8l14QlcNfg=
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/reflect2 v0.0.0-20180320133207-05fbef0ca5da/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/modern-go/reflect2 v0.0.0-20180701023420-4b7aa43c6742/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/modern-go/reflect2 v1.0.1 h1:9f412s+6RmYXLWZSEzVVgPGK7C2PphHj5RJrvfx9AWI=
github.com/modern-go/reflect2 v1.0.1/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/mohae/deepcopy v0.0.0-20170603005431-491d3605edfb/go.mod h1:TaXosZuwdSHYgviHp1DAtfrULt5eUgsSMsZf+YrPgl8=
github.com/morikuni/aec v0.0.0-20170113033406-39771216ff4c/go.mod h1:BbKIizmSmc5MMPqRYbxO4ZU0S0+P200+tUnFx7PXmsc=
github.com/morikuni/aec v1.0.0/go.mod h1:BbKIizmSmc5MMPqRYbxO4ZU0S0+P200+tUnFx7PXmsc=
github.com/moul/http2curl v1.0.0 h1:dRMWoAtb+ePxMlLkrCbAqh4TlPHXvoGUSQ323/9Zahs=
github.com/moul/http2curl v1.0.0/go.mod h1:8UbvGypXm98wA/IqH45anm5Y2Z6ep6O31QGOAZ3H0fQ=
github.com/moul/pb v0.0.0-20180404114147-54bdd96e6a52 h1:8zDEa5yAIWYBHSDpPbSgGIBL/SvPSE9/FlB3aQ54d/A=
@ -498,16 +504,13 @@ github.com/ncabatoff/procfs v0.0.0-20190407151002-9ced60d7b905/go.mod h1:KTPr41g
github.com/oklog/ulid v1.3.1/go.mod h1:CirwcVhetQ6Lv90oh/F+FBtV6XMibvdAFo93nm5qn4U=
github.com/olekukonko/tablewriter v0.0.0-20170122224234-a0225b3f23b5/go.mod h1:vsDQFd/mU46D+Z4whnwzcISnGGzXWMclvtLoiIKAKIo=
github.com/onsi/ginkgo v0.0.0-20170829012221-11459a886d9c/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.4.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.6.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.8.0 h1:VkHVNpR4iVnU8XQR6DBm8BqYjN7CRzw+xKUbVVbbW9w=
github.com/onsi/ginkgo v1.8.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.10.1 h1:q/mM8GF/n0shIN8SaAZ0V+jnLPzen6WIVZdiwrRlMlo=
github.com/onsi/ginkgo v1.10.1/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.11.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.12.0 h1:Iw5WCbBcaAAd0fpRb1c9r5YCylv4XDoCSigm1zLevwU=
github.com/onsi/ginkgo v1.12.0/go.mod h1:oUhWkIvk5aDxtKvDDuw8gItl8pKl42LzjC9KZE0HfGg=
github.com/onsi/gomega v0.0.0-20170829124025-dcabb60a477c/go.mod h1:C1qb7wdrVGGVU+Z6iS04AVkA3Q65CEZX59MT0QO5uiA=
github.com/onsi/gomega v1.3.0/go.mod h1:C1qb7wdrVGGVU+Z6iS04AVkA3Q65CEZX59MT0QO5uiA=
github.com/onsi/gomega v1.4.2/go.mod h1:ex+gbHU/CVuBBDIJjb2X0qEXbFg53c61hWP/1CpauHY=
github.com/onsi/gomega v1.4.3/go.mod h1:ex+gbHU/CVuBBDIJjb2X0qEXbFg53c61hWP/1CpauHY=
github.com/onsi/gomega v1.5.0 h1:izbySO9zDPmjJ8rDjLvkA2zJHIo+HkYXHnf7eN7SSyo=
@ -516,9 +519,12 @@ github.com/onsi/gomega v1.7.0 h1:XPnZz8VVBHjVsy1vzJmRwIcSwiUO+JFfrv/xGiigmME=
github.com/onsi/gomega v1.7.0/go.mod h1:ex+gbHU/CVuBBDIJjb2X0qEXbFg53c61hWP/1CpauHY=
github.com/onsi/gomega v1.7.1 h1:K0jcRCwNQM3vFGh1ppMtDh/+7ApJrjldlX8fA0jDTLQ=
github.com/onsi/gomega v1.7.1/go.mod h1:XdKZgCCFLUoM/7CFJVPcG8C1xQ1AJ0vpAezJrB7JYyY=
github.com/onsi/gomega v1.8.1 h1:C5Dqfs/LeauYDX0jJXIe2SWmwCbGzx9yF8C8xy3Lh34=
github.com/onsi/gomega v1.8.1/go.mod h1:Ho0h+IUsWyvy1OpqCwxlQ/21gkhVunqlU8fDGcoTdcA=
github.com/opencontainers/go-digest v1.0.0-rc1 h1:WzifXhOVOEOuFYOJAW6aQqW0TooG2iki3E3Ii+WN7gQ=
github.com/opencontainers/go-digest v1.0.0-rc1/go.mod h1:cMLVZDEM3+U2I4VmLI6N8jQYUd2OVphdqWwCJHrFt2s=
github.com/opencontainers/image-spec v1.0.1/go.mod h1:BtxoFyWECRxE4U/7sNtV5W15zMzWCbyJoFRP3s7yZA0=
github.com/opencontainers/runc v1.0.0-rc10/go.mod h1:qT5XzbpPznkRYVz/mWwUaVBUv2rmF59PVA73FjuZG0U=
github.com/opencontainers/runc v1.0.0-rc9 h1:/k06BMULKF5hidyoZymkoDCzdJzltZpz/UU4LguQVtc=
github.com/opencontainers/runc v1.0.0-rc9/go.mod h1:qT5XzbpPznkRYVz/mWwUaVBUv2rmF59PVA73FjuZG0U=
github.com/opencontainers/runtime-spec v1.0.0 h1:O6L965K88AilqnxeYPks/75HLpp4IG+FjeSCI3cVdRg=
@ -534,14 +540,12 @@ github.com/pkg/errors v0.8.1 h1:iURUrRGxPUNPdy5/HRSm+Yj6okJ6UtLINN0Q9M4+h3I=
github.com/pkg/errors v0.8.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pmezard/go-difflib v0.0.0-20151028094244-d8ed2627bdf0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/pquerna/cachecontrol v0.0.0-20171018203845-0dec1b30a021/go.mod h1:prYjPmNq4d1NPVmpShWobRqXY3q7Vp+80DqgxxUrUIA=
github.com/pquerna/ffjson v0.0.0-20180717144149-af8b230fcd20/go.mod h1:YARuvh7BUWHNhzDq2OM5tzR2RiCcN2D7sapiKyCel/M=
github.com/prometheus/client_golang v0.8.0/go.mod h1:7SWBe2y4D6OKWSNQJUaRYU/AaXPKyh/dDVn+NZz0KFw=
github.com/prometheus/client_golang v0.9.1/go.mod h1:7SWBe2y4D6OKWSNQJUaRYU/AaXPKyh/dDVn+NZz0KFw=
github.com/prometheus/client_golang v0.9.2/go.mod h1:OsXs2jCmiKlQ1lTBmv21f2mNfw4xf/QclQDMrYNZzcM=
github.com/prometheus/client_golang v0.9.3/go.mod h1:/TN21ttK/J9q6uSwhBd54HahCDft0ttaMvbicHlPoso=
github.com/prometheus/client_golang v1.0.0 h1:vrDKnkGzuGvhNAL56c7DBz29ZL+KxnoR0x7enabFceM=
github.com/prometheus/client_golang v1.0.0/go.mod h1:db9x61etRT2tGnBNRi70OPL5FsnadC4Ky3P0J6CfImo=
@ -550,18 +554,17 @@ github.com/prometheus/client_golang v1.4.0/go.mod h1:e9GMxYsXl05ICDXkRhurwBS4Q3O
github.com/prometheus/client_model v0.0.0-20180712105110-5c3871d89910/go.mod h1:MbSGuTsp3dbXC40dX6PRTWyKYBIrTGTE9sqQNg2J8bo=
github.com/prometheus/client_model v0.0.0-20190129233127-fd36f4220a90 h1:S/YWwWx/RA8rT8tKFRuGUZhuA90OyIBpPCXkcbwU8DE=
github.com/prometheus/client_model v0.0.0-20190129233127-fd36f4220a90/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA=
github.com/prometheus/client_model v0.0.0-20190812154241-14fe0d1b01d4/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA=
github.com/prometheus/client_model v0.2.0 h1:uq5h0d+GuxiXLJLNABMgp2qUWDPiLvgCzz2dUR+/W/M=
github.com/prometheus/client_model v0.2.0/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA=
github.com/prometheus/common v0.0.0-20180801064454-c7de2306084e/go.mod h1:daVV7qP5qjZbuso7PdcryaAu0sAZbrN9i7WWcTMWvro=
github.com/prometheus/common v0.0.0-20181113130724-41aa239b4cce/go.mod h1:daVV7qP5qjZbuso7PdcryaAu0sAZbrN9i7WWcTMWvro=
github.com/prometheus/common v0.0.0-20181126121408-4724e9255275/go.mod h1:daVV7qP5qjZbuso7PdcryaAu0sAZbrN9i7WWcTMWvro=
github.com/prometheus/common v0.4.0/go.mod h1:TNfzLD0ON7rHzMJeJkieUDPYmFC7Snx/y86RQel1bk4=
github.com/prometheus/common v0.4.1 h1:K0MGApIoQvMw27RTdJkPbr3JZ7DNbtxQNyi5STVM6Kw=
github.com/prometheus/common v0.4.1/go.mod h1:TNfzLD0ON7rHzMJeJkieUDPYmFC7Snx/y86RQel1bk4=
github.com/prometheus/common v0.9.1 h1:KOMtN28tlbam3/7ZKEYKHhKoJZYYj3gMH4uc62x7X7U=
github.com/prometheus/common v0.9.1/go.mod h1:yhUN8i9wzaXS3w1O07YhxHEBxD+W35wd8bs7vj7HSQ4=
github.com/prometheus/procfs v0.0.0-20181005140218-185b4288413d/go.mod h1:c3At6R/oaqEKCNdg8wHV1ftS6bRYblBhIjjI8uT2IGk=
github.com/prometheus/procfs v0.0.0-20181204211112-1dc9a6cbc91a/go.mod h1:c3At6R/oaqEKCNdg8wHV1ftS6bRYblBhIjjI8uT2IGk=
github.com/prometheus/procfs v0.0.0-20190403104016-ea9eea638872/go.mod h1:TjEm7ze935MbeOT/UhFTIMYKhuLP4wbCsTZCD3I8kEA=
github.com/prometheus/procfs v0.0.0-20190507164030-5867b95ac084/go.mod h1:TjEm7ze935MbeOT/UhFTIMYKhuLP4wbCsTZCD3I8kEA=
github.com/prometheus/procfs v0.0.2 h1:6LJUbpNm42llc4HRCuvApCSWB/WfhuNo9K98Q9sNGfs=
@ -594,12 +597,12 @@ github.com/sirupsen/logrus v1.0.5/go.mod h1:pMByvHTf9Beacp5x1UXfOR9xyW/9antXMhjM
github.com/sirupsen/logrus v1.0.6/go.mod h1:pMByvHTf9Beacp5x1UXfOR9xyW/9antXMhjMPG0dEzc=
github.com/sirupsen/logrus v1.2.0 h1:juTguoYk5qI21pwyTXY3B3Y5cOTH3ZUyZCg1v/mihuo=
github.com/sirupsen/logrus v1.2.0/go.mod h1:LxeOpSwHxABJmUn/MG1IvRgCAasNZTLOkJPxbbu5VWo=
github.com/sirupsen/logrus v1.4.1/go.mod h1:ni0Sbl8bgC9z8RoU9G6nDWqqs/fq4eDPysMBDgk/93Q=
github.com/sirupsen/logrus v1.4.2 h1:SPIRibHv4MatM3XXNO2BJeFLZwZ2LvZgfQ5+UNI2im4=
github.com/sirupsen/logrus v1.4.2/go.mod h1:tLMulIdttU9McNUspp0xgXVQah82FyeX6MwdIuYE2rE=
github.com/smartystreets/assertions v0.0.0-20180927180507-b2de0cb4f26d h1:zE9ykElWQ6/NYmHa3jpm/yHnI4xSofP+UP6SpjHcSeM=
github.com/smartystreets/assertions v0.0.0-20180927180507-b2de0cb4f26d/go.mod h1:OnSkiWE9lh6wB0YB77sQom3nweQdgAjqCqsofrRNTgc=
github.com/smartystreets/goconvey v0.0.0-20190330032615-68dc04aab96a h1:pa8hGb/2YqsZKovtsgrwcDH1RZhVbTKCjLp47XpqCDs=
github.com/smartystreets/goconvey v0.0.0-20190330032615-68dc04aab96a/go.mod h1:syvi0/a8iFYH4r/RixwvyeAJjdLS9QV7WQ/tjFTllLA=
github.com/smartystreets/goconvey v1.6.4/go.mod h1:syvi0/a8iFYH4r/RixwvyeAJjdLS9QV7WQ/tjFTllLA=
github.com/soheilhy/cmux v0.1.4/go.mod h1:IM3LyeVVIOuxMH7sFAkER9+bJ4dT7Ms6E4xg4kGIyLM=
github.com/sourcegraph/go-diff v0.5.1/go.mod h1:j2dHj3m8aZgQO8lMTcTnBcXkRRRqi34cd2MNlA9u1mE=
github.com/spaolacci/murmur3 v0.0.0-20180118202830-f09979ecbc72/go.mod h1:JwIasOWyU6f++ZhiEuf87xNszmSA2myDM2Kzu9HwQUA=
@ -634,7 +637,6 @@ github.com/stretchr/objx v0.1.1 h1:2vfRuCMp5sSVIDSqO8oNnWJq7mPa6KVP3iPIwFBuy8A=
github.com/stretchr/objx v0.1.1/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.2.0 h1:Hbg2NidpLE8veEBkEZTL3CvlkUIVzuU9jDplZO54c48=
github.com/stretchr/objx v0.2.0/go.mod h1:qt09Ya8vawLte6SNmTgCsAVtYtaKzEcn8ATUoHMkEqE=
github.com/stretchr/testify v0.0.0-20151208002404-e3a8ff8ce365/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
github.com/stretchr/testify v1.3.0 h1:TivCn/peBQ7UY8ooIcPgZFpTNSz0Q2U6UrFlUfqbe0Q=
github.com/stretchr/testify v1.3.0/go.mod h1:M5WIy9Dh21IEIfnGCwXGc5bZfKNJtfHm1UVUgZn+9EI=
@ -699,7 +701,6 @@ go.uber.org/atomic v1.4.0 h1:cxzIVoETapQEqDhQu3QfnvXAV4AlzcvUCxkVUFw3+EU=
go.uber.org/atomic v1.4.0/go.mod h1:gD2HeocX3+yG+ygLZcrzQJaqmWj9AIm7n08wl/qW/PE=
go.uber.org/multierr v1.1.0 h1:HoEmRHQPVSqub6w2z2d2EOVs2fjyFRGyofhKuyDq0QI=
go.uber.org/multierr v1.1.0/go.mod h1:wR5kodmAFQ0UK8QlbwjlSNy0Z68gJhDJUG5sjR94q/0=
go.uber.org/zap v1.9.1/go.mod h1:vwi/ZaCAaUcBkycHslxD9B2zi4UTXhF60s6SWpuDF0Q=
go.uber.org/zap v1.10.0 h1:ORx85nbTijNz8ljznvCMR1ZBIPKFn3jQrag10X2AsuM=
go.uber.org/zap v1.10.0/go.mod h1:vwi/ZaCAaUcBkycHslxD9B2zi4UTXhF60s6SWpuDF0Q=
go4.org v0.0.0-20180809161055-417644f6feb5/go.mod h1:MkTOUMDaeVYJUOUsaDXIhWPZYa1yOyC1qaOBpL57BhE=
@ -719,12 +720,15 @@ golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8U
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8 h1:1wopBVtVdWnn03fZelqdXTqk7U7zPQCb+T4rbU9ZEoU=
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20190617133340-57b3e21c3d56/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20190820162420-60c769a6c586 h1:7KByu05hhLed2MO29w7p1XfZvZ13m8mub3shuVftRs0=
golang.org/x/crypto v0.0.0-20190820162420-60c769a6c586/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200220183623-bac4c82f6975 h1:/Tl7pH94bvbAAHBdZJT947M/+gp0+CqQXDtMRC0fseo=
golang.org/x/crypto v0.0.0-20200220183623-bac4c82f6975/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190312203227-4b39c73a6495 h1:I6A9Ag9FpEKOjcKrRNjQkPHawoXIhKyTGfvvjFAiiAk=
golang.org/x/exp v0.0.0-20190312203227-4b39c73a6495/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8=
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
@ -735,7 +739,6 @@ golang.org/x/mobile v0.0.0-20190312151609-d3739f865fa6/go.mod h1:z+o9i4GpDbdi3rU
golang.org/x/mod v0.0.0-20190513183733-4bf6d317e70e/go.mod h1:mXi4GBBbnImb6dmsKGUJ2LatrhH/nqhxcFungHvyanc=
golang.org/x/net v0.0.0-20170114055629-f2499483f923/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20170915142106-8351a756f30f/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180112015858-5ccada7d0a7b/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180906233101-161cd47e91fd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
@ -743,7 +746,6 @@ golang.org/x/net v0.0.0-20180911220305-26e67e76b6c3/go.mod h1:mL1N/T3taQHkDXs73r
golang.org/x/net v0.0.0-20181005035420-146acd28ed58/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181102091132-c10e9556a7bc/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181114220301-adae6a3d119a/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181201002055-351d144fa1fc/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181220203305-927f97764cc3/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190125091013-d26f9f9a57f3/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
@ -778,7 +780,6 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20170830134202-bb24a47a89ea/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20171026204733-164713f0dfce/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180117170059-2c42eef0765b/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180905080454-ebe1bf3edb33/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
@ -789,6 +790,7 @@ golang.org/x/sys v0.0.0-20190122071731-054c452bb702/go.mod h1:STP8DvDyc/dI5b8T5h
golang.org/x/sys v0.0.0-20190124100055-b90733256f2e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190209173611-3b5209105503/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190222072716-a9d3bda3a223/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190228124157-a34e9553db1e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190321052220-f7bb7a8bee54/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@ -801,13 +803,13 @@ golang.org/x/sys v0.0.0-20190616124812-15dcb6c0061f/go.mod h1:h1NjWce9XRLGQEsW7w
golang.org/x/sys v0.0.0-20190813064441-fde4db37ae7a/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190826190057-c7b8b68b1456 h1:ng0gs1AKnRRuEMZoTLLlbOd+C17zUDepwGQBb/n+JVg=
golang.org/x/sys v0.0.0-20190826190057-c7b8b68b1456/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191022100944-742c48ecaeb7/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191120155948-bd437916bb0e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200122134326-e047566fdf82 h1:ywK/j/KkyTHcdyYSZNXGjMwgmDSfjglYZ3vStQ/gSCU=
golang.org/x/sys v0.0.0-20200122134326-e047566fdf82/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/text v0.0.0-20160726164857-2910a502d2bf/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.0.0-20170915090833-1cbadb444a80/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.1-0.20171227012246-e19ae1496984/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.1-0.20180807135948-17ff2d5776d2/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.2 h1:tW2bmiBqwgJj/UpqtC8EpXEZVYOwU0yG4iWbprSVAcs=
golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk=
@ -837,6 +839,7 @@ golang.org/x/tools v0.0.0-20190312170243-e65039ee4138/go.mod h1:LCzVGOaR6xXOjkQ3
golang.org/x/tools v0.0.0-20190322203728-c1a832b0ad89/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
golang.org/x/tools v0.0.0-20190328211700-ab21143f2384 h1:TFlARGu6Czu1z7q93HTxcP1P+/ZFC/IKythI5RzrnRg=
golang.org/x/tools v0.0.0-20190328211700-ab21143f2384/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
golang.org/x/tools v0.0.0-20190425150028-36563e24a262/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
golang.org/x/tools v0.0.0-20190506145303-2d16b83fe98c/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
golang.org/x/tools v0.0.0-20190521203540-521d6ed310dd/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
golang.org/x/tools v0.0.0-20190524140312-2c0ae7006135/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
@ -850,12 +853,16 @@ golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7 h1:9zdDQZ7Thm29KFXgAX/+y
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543 h1:E7g+9GITq07hpfrRu66IVDexMakfv52eLZ2CXBWiKr4=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gomodules.xyz/jsonpatch/v2 v2.0.1 h1:xyiBuvkD2g5n7cYzx6u2sxQvsAy4QJsZFCzGVdzOXZ0=
gomodules.xyz/jsonpatch/v2 v2.0.1/go.mod h1:IhYNNY4jnS53ZnfE4PAmpKtDpTCj1JFXc+3mwe7XcUU=
gonum.org/v1/gonum v0.0.0-20180816165407-929014505bf4/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo=
gonum.org/v1/gonum v0.0.0-20190331200053-3d26580ed485 h1:OB/uP/Puiu5vS5QMRPrXCDWUPb+kt8f1KW8oQzFejQw=
gonum.org/v1/gonum v0.0.0-20190331200053-3d26580ed485/go.mod h1:2ltnJ7xHfj0zHS40VVPYEAAMTa3ZGguvHGBSJeRWqE0=
gonum.org/v1/gonum v0.6.2/go.mod h1:9mxDZsDKxgMAuccQkewq682L+0eCu4dCN2yonUJTCLU=
gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw=
gonum.org/v1/netlib v0.0.0-20190331212654-76723241ea4e h1:jRyg0XfpwWlhEV8mDfdNGBeSJM2fuyh9Yjrnd8kF2Ts=
gonum.org/v1/netlib v0.0.0-20190331212654-76723241ea4e/go.mod h1:kS+toOQn6AQKjmKJ7gzohV1XkqsFehRA2FbsbkopSuQ=
gonum.org/v1/plot v0.0.0-20190515093506-e2840ee46a6b/go.mod h1:Wt8AAjI+ypCyYX3nZBvf6cAIx93T+c/OS2HFAYskSZc=
google.golang.org/api v0.4.0/go.mod h1:8k5glujaEP+g9n7WNsDg8QP6cUVNI86fCNMcbazEtwE=
google.golang.org/api v0.6.1-0.20190607001116-5213b8090861/go.mod h1:btoxGiFvQNVUZQ8W08zLtrVS08CNpINPEfxXxgJL1Q4=
google.golang.org/appengine v1.1.0/go.mod h1:EbEs0AVv82hx2wNQdGPgUI5lhzA/G0D9YwlJXL52JkM=
@ -869,11 +876,14 @@ google.golang.org/genproto v0.0.0-20190418145605-e7d98fc518a7 h1:ZUjXAXmrAyrmmCP
google.golang.org/genproto v0.0.0-20190418145605-e7d98fc518a7/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE=
google.golang.org/genproto v0.0.0-20190502173448-54afdca5d873 h1:nfPFGzJkUDX6uBmpN/pSw7MbOAWegH5QDQuoXFHedLg=
google.golang.org/genproto v0.0.0-20190502173448-54afdca5d873/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE=
google.golang.org/genproto v0.0.0-20190819201941-24fa4b261c55/go.mod h1:DMBHOl98Agz4BDEuKkezgsaosCRResVns1a3J2ZsMNc=
google.golang.org/grpc v1.19.0/go.mod h1:mqu4LbDTu4XGKhr4mRzUsmM4RtVoemTSY81AxZiDr8c=
google.golang.org/grpc v1.20.1/go.mod h1:10oTOabMzJvdu6/UiuZezV6QK5dSlG84ov/aaiqXj38=
google.golang.org/grpc v1.21.0/go.mod h1:oYelfM1adQP15Ek0mdvEgi9Df8B9CZIaU1084ijfRaM=
google.golang.org/grpc v1.23.0/go.mod h1:Y5yQAOtifL1yxbo5wqy6BxZv8vAUGQwXBOALyacEbxg=
google.golang.org/grpc v1.23.1 h1:q4XQuHFC6I28BKZpo6IYyb3mNO+l7lSOxRuYTCiDfXk=
google.golang.org/grpc v1.23.1/go.mod h1:Y5yQAOtifL1yxbo5wqy6BxZv8vAUGQwXBOALyacEbxg=
google.golang.org/grpc v1.26.0/go.mod h1:qbnxyOmOxrQa7FizSgH+ReBfzJrCY1pSN7KXBS8abTk=
gopkg.in/airbrake/gobrake.v2 v2.0.9/go.mod h1:/h5ZAUhDkGaJfjzjKLSjv6zCL6O0LLBxU4K+aSYdM/U=
gopkg.in/alecthomas/kingpin.v2 v2.2.6/go.mod h1:FMv+mEhP44yOT+4EoQTLFTRgOQ1FBLkstjWtayDeSgw=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
@ -905,7 +915,6 @@ gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7 h1:uRGJdciOHaEIrze2W8Q3AKkep
gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7/go.mod h1:dt/ZhP58zS4L8KSrWDmTeBkI65Dw0HsyUHuEVlX15mw=
gopkg.in/warnings.v0 v0.1.1/go.mod h1:jksf8JmL6Qr/oQM2OXTHunEvvTAsrWBLb6OOjuVWRNI=
gopkg.in/yaml.v2 v2.0.0-20170812160011-eb3733d160e7/go.mod h1:JAlM8MvJe8wmxCU4Bli9HhUf9+ttbYbLASfIpnQbh74=
gopkg.in/yaml.v2 v2.0.0/go.mod h1:JAlM8MvJe8wmxCU4Bli9HhUf9+ttbYbLASfIpnQbh74=
gopkg.in/yaml.v2 v2.2.1/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
gopkg.in/yaml.v2 v2.2.2 h1:ZCJp+EgiOT7lHqUV2J862kp8Qj64Jo6az82+3Td9dZw=
gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
@ -923,54 +932,53 @@ honnef.co/go/tools v0.0.0-20190106161140-3f1c8253044a/go.mod h1:rf3lG4BRIbNafJWh
honnef.co/go/tools v0.0.0-20190418001031-e561f6794a2a/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
honnef.co/go/tools v0.0.0-20190523083050-ea95bdfd59fc/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
honnef.co/go/tools v0.0.1-2019.2.2/go.mod h1:a3bituU0lyd329TUQxRnasdCoJDkEUEAqEt0JzvZhAg=
k8s.io/api v0.17.3 h1:XAm3PZp3wnEdzekNkcmj/9Y1zdmQYJ1I4GKSBBZ8aG0=
k8s.io/api v0.17.3/go.mod h1:YZ0OTkuw7ipbe305fMpIdf3GLXZKRigjtZaV5gzC2J0=
k8s.io/apiextensions-apiserver v0.17.3 h1:WDZWkPcbgvchEdDd7ysL21GGPx3UKZQLDZXEkevT6n4=
k8s.io/apiextensions-apiserver v0.17.3/go.mod h1:CJbCyMfkKftAd/X/V6OTHYhVn7zXnDdnkUjS1h0GTeY=
k8s.io/apimachinery v0.17.3 h1:f+uZV6rm4/tHE7xXgLyToprg6xWairaClGVkm2t8omg=
k8s.io/apimachinery v0.17.3/go.mod h1:gxLnyZcGNdZTCLnq3fgzyg2A5BVCHTNDFrw8AmuJ+0g=
k8s.io/apiserver v0.17.3 h1:faZbSuFtJ4dx09vctKZGHms/7bp3qFtbqb10Swswqfs=
k8s.io/apiserver v0.17.3/go.mod h1:iJtsPpu1ZpEnHaNawpSV0nYTGBhhX2dUlnn7/QS7QiY=
k8s.io/cli-runtime v0.17.3 h1:0ZlDdJgJBKsu77trRUynNiWsRuAvAVPBNaQfnt/1qtc=
k8s.io/cli-runtime v0.17.3/go.mod h1:X7idckYphH4SZflgNpOOViSxetiMj6xI0viMAjM81TA=
k8s.io/client-go v0.17.3 h1:deUna1Ksx05XeESH6XGCyONNFfiQmDdqeqUvicvP6nU=
k8s.io/client-go v0.17.3/go.mod h1:cLXlTMtWHkuK4tD360KpWz2gG2KtdWEr/OT02i3emRQ=
k8s.io/cloud-provider v0.17.3 h1:tpjoxeb8lSrGr5FpF9fVRf9I+stW6VOw9dVvPeJLu7s=
k8s.io/cloud-provider v0.17.3/go.mod h1:JBkKSQpbcjcYGDqH5PbifFrcgQ/7WOXRswnfLVbXpI8=
k8s.io/cluster-bootstrap v0.17.3/go.mod h1:ujIYnCKnxY/MecpgPx9WgiYCVCFvici6tVIfI2FiI1g=
k8s.io/code-generator v0.17.3 h1:q/hDMk2cvFzSxol7k/VA1qCssR7VSMXHQHhzuX29VJ8=
k8s.io/code-generator v0.17.3/go.mod h1:l8BLVwASXQZTo2xamW5mQNFCe1XPiAesVq7Y1t7PiQQ=
k8s.io/component-base v0.17.3 h1:hQzTSshY14aLSR6WGIYvmw+w+u6V4d+iDR2iDGMrlUg=
k8s.io/component-base v0.17.3/go.mod h1:GeQf4BrgelWm64PXkIXiPh/XS0hnO42d9gx9BtbZRp8=
k8s.io/cri-api v0.17.3 h1:jvjVvBqgZq3WcaPq07n0h5h9eCnIaR4dhKyHSoZG8Y8=
k8s.io/cri-api v0.17.3/go.mod h1:X1sbHmuXhwaHs9xxYffLqJogVsnI+f6cPRcgPel7ywM=
k8s.io/csi-translation-lib v0.17.3/go.mod h1:FBya8XvGIqDm2/3evLQNxaFXqv/C2UcZa5JgJt6/qqY=
k8s.io/api v0.18.0 h1:lwYk8Vt7rsVTwjRU6pzEsa9YNhThbmbocQlKvNBB4EQ=
k8s.io/api v0.18.0/go.mod h1:q2HRQkfDzHMBZL9l/y9rH63PkQl4vae0xRT+8prbrK8=
k8s.io/apiextensions-apiserver v0.18.0 h1:HN4/P8vpGZFvB5SOMuPPH2Wt9Y/ryX+KRvIyAkchu1Q=
k8s.io/apiextensions-apiserver v0.18.0/go.mod h1:18Cwn1Xws4xnWQNC00FLq1E350b9lUF+aOdIWDOZxgo=
k8s.io/apimachinery v0.18.0 h1:fuPfYpk3cs1Okp/515pAf0dNhL66+8zk8RLbSX+EgAE=
k8s.io/apimachinery v0.18.0/go.mod h1:9SnR/e11v5IbyPCGbvJViimtJ0SwHG4nfZFjU77ftcA=
k8s.io/apiserver v0.18.0 h1:ELAWpGWC6XdbRLi5lwAbEbvksD7hkXxPdxaJsdpist4=
k8s.io/apiserver v0.18.0/go.mod h1:3S2O6FeBBd6XTo0njUrLxiqk8GNy6wWOftjhJcXYnjw=
k8s.io/cli-runtime v0.18.0 h1:jG8XpSqQ5TrV0N+EZ3PFz6+gqlCk71dkggWCCq9Mq34=
k8s.io/cli-runtime v0.18.0/go.mod h1:1eXfmBsIJosjn9LjEBUd2WVPoPAY9XGTqTFcPMIBsUQ=
k8s.io/client-go v0.18.0 h1:yqKw4cTUQraZK3fcVCMeSa+lqKwcjZ5wtcOIPnxQno4=
k8s.io/client-go v0.18.0/go.mod h1:uQSYDYs4WhVZ9i6AIoEZuwUggLVEF64HOD37boKAtF8=
k8s.io/cloud-provider v0.18.0 h1:Ri82BTdMutzIoiBWz/IS5o7I/+fCgRbO09iPWNfrZEM=
k8s.io/cloud-provider v0.18.0/go.mod h1:ZBq1FhoJ+XoQ8JYBYoyx81LS3JV0RAW/UmHf/6w9E6k=
k8s.io/cluster-bootstrap v0.18.0/go.mod h1:xSe+bOZ3asS/ciT91ESQYGhjOql43aBETfvbCzNvad8=
k8s.io/code-generator v0.18.0 h1:0xIRWzym+qMgVpGmLESDeMfz/orwgxwxFFAo1xfGNtQ=
k8s.io/code-generator v0.18.0/go.mod h1:+UHX5rSbxmR8kzS+FAv7um6dtYrZokQvjHpDSYRVkTc=
k8s.io/component-base v0.18.0 h1:I+lP0fNfsEdTDpHaL61bCAqTZLoiWjEEP304Mo5ZQgE=
k8s.io/component-base v0.18.0/go.mod h1:u3BCg0z1uskkzrnAKFzulmYaEpZF7XC9Pf/uFyb1v2c=
k8s.io/cri-api v0.18.0 h1:ryVwCnvQ2OxtQHe56o85xZ9MkIoW4j0FrjgJG7x/Amw=
k8s.io/cri-api v0.18.0/go.mod h1:OJtpjDvfsKoLGhvcc0qfygved0S0dGX56IJzPbqTG1s=
k8s.io/csi-translation-lib v0.18.0/go.mod h1:iF8TE4ACSaPqN1qxmiIjvcU1A8VgkOrpcFGD7Z0hVu0=
k8s.io/gengo v0.0.0-20190128074634-0689ccc1d7d6/go.mod h1:ezvh/TsK7cY6rbqRK0oQQ8IAqLxYwwyPxAX1Pzy0ii0=
k8s.io/gengo v0.0.0-20190822140433-26a664648505 h1:ZY6yclUKVbZ+SdWnkfY+Je5vrMpKOxmGeKRbsXVmqYM=
k8s.io/gengo v0.0.0-20190822140433-26a664648505/go.mod h1:ezvh/TsK7cY6rbqRK0oQQ8IAqLxYwwyPxAX1Pzy0ii0=
k8s.io/gengo v0.0.0-20200114144118-36b2048a9120 h1:RPscN6KhmG54S33L+lr3GS+oD1jmchIU0ll519K6FA4=
k8s.io/gengo v0.0.0-20200114144118-36b2048a9120/go.mod h1:ezvh/TsK7cY6rbqRK0oQQ8IAqLxYwwyPxAX1Pzy0ii0=
k8s.io/heapster v1.2.0-beta.1/go.mod h1:h1uhptVXMwC8xtZBYsPXKVi8fpdlYkTs6k949KozGrM=
k8s.io/klog v0.0.0-20181102134211-b9b56d5dfc92/go.mod h1:Gq+BEi5rUBO/HRz0bTSXDUcqjScdoY3a9IHpCEIOOfk=
k8s.io/klog v0.3.0/go.mod h1:Gq+BEi5rUBO/HRz0bTSXDUcqjScdoY3a9IHpCEIOOfk=
k8s.io/klog v1.0.0 h1:Pt+yjF5aB1xDSVbau4VsWe+dQNzA0qv1LlXdC2dF6Q8=
k8s.io/klog v1.0.0/go.mod h1:4Bi6QPql/J/LkTDqv7R/cd3hPo4k2DG6Ptcz060Ez5I=
k8s.io/kube-aggregator v0.17.3/go.mod h1:1dMwMFQbmH76RKF0614L7dNenMl3dwnUJuOOyZ3GMXA=
k8s.io/kube-controller-manager v0.17.3/go.mod h1:22B/TsgVviuCVuNwUrqgyTi5D4AYjMFaK9c8h1oonkY=
k8s.io/kube-openapi v0.0.0-20191107075043-30be4d16710a h1:UcxjrRMyNx/i/y8G7kPvLyy7rfbeuf1PYyBf973pgyU=
k8s.io/kube-openapi v0.0.0-20191107075043-30be4d16710a/go.mod h1:1TqjTSzOxsLGIKfj0lK8EeCP7K1iUG65v09OM0/WG5E=
k8s.io/kube-proxy v0.17.3/go.mod h1:ds8R8bUYPWtQlspC47Sff7o5aQhWDsv6jpQJATDuqaQ=
k8s.io/kube-scheduler v0.17.3/go.mod h1:36HgrrPqzK+rOLTRtDG//b89KjrAZqFI4PXOpdH351M=
k8s.io/kubectl v0.17.3/go.mod h1:NUn4IBY7f7yCMwSop2HCXlw/MVYP4HJBiUmOR3n9w28=
k8s.io/kubelet v0.17.3/go.mod h1:Nh8owUHZcUXtnDAtmGnip36Nw+X6c4rbmDQlVyIhwMQ=
k8s.io/kubernetes v1.17.3 h1:zWCppkLfHM+hoLqfbsrQ0cJnYw+4vAvedI92oQnjo/Q=
k8s.io/kubernetes v1.17.3/go.mod h1:gt28rfzaskIzJ8d82TSJmGrJ0XZD0BBy8TcQvTuCI3w=
k8s.io/legacy-cloud-providers v0.17.3/go.mod h1:ujZML5v8efVQxiXXTG+nck7SjP8KhMRjUYNIsoSkYI0=
k8s.io/metrics v0.17.3/go.mod h1:HEJGy1fhHOjHggW9rMDBJBD3YuGroH3Y1pnIRw9FFaI=
k8s.io/kube-aggregator v0.18.0/go.mod h1:ateewQ5QbjMZF/dihEFXwaEwoA4v/mayRvzfmvb6eqI=
k8s.io/kube-controller-manager v0.18.0/go.mod h1:pIRGUrSo+skWzwr5pgWNbgiFWEGSotbamGQpR/gKd5U=
k8s.io/kube-openapi v0.0.0-20200121204235-bf4fb3bd569c h1:/KUFqjjqAcY4Us6luF5RDNZ16KJtb49HfR3ZHB9qYXM=
k8s.io/kube-openapi v0.0.0-20200121204235-bf4fb3bd569c/go.mod h1:GRQhZsXIAJ1xR0C9bd8UpWHZ5plfAS9fzPjJuQ6JL3E=
k8s.io/kube-proxy v0.18.0/go.mod h1:st3Gcg9wYAd1sn6UMeAs5AHN3R0NOItfB5P6qObKrr8=
k8s.io/kube-scheduler v0.18.0/go.mod h1:GFaNT5Z5/zPZsjXmkGihac2qsT+0u2KIHDgXdFfPHPc=
k8s.io/kubectl v0.18.0/go.mod h1:LOkWx9Z5DXMEg5KtOjHhRiC1fqJPLyCr3KtQgEolCkU=
k8s.io/kubelet v0.18.0/go.mod h1:1VULM2m7c/ePlIeNOVVK+kkprayDr1RPf1T8oaNaHuQ=
k8s.io/kubernetes v1.18.0 h1:rVe+edi5GwutPQJ4KIZq1Nk506nmnfyz/KOZVCLv7Yo=
k8s.io/kubernetes v1.18.0/go.mod h1:z8xjOOO1Ljz+TaHpOxVGC7cxtF32TesIamoQ+BZrVS0=
k8s.io/legacy-cloud-providers v0.18.0/go.mod h1:4Bc9CdZg8wl0mskyhnaXa8DdqLpTUfPEMkw3FZok+H8=
k8s.io/metrics v0.18.0/go.mod h1:8aYTW18koXqjLVKL7Ds05RPMX9ipJZI3mywYvBOxXd4=
k8s.io/repo-infra v0.0.1-alpha.1/go.mod h1:wO1t9WaB99V80ljbeENTnayuEEwNZt7gECYh/CEyOJ8=
k8s.io/sample-apiserver v0.17.3/go.mod h1:cn/rvFIttGNqy1v88B5ZlDAbyyqDOoF7JHSwPiqNCNQ=
k8s.io/sample-apiserver v0.18.0/go.mod h1:1RKw7QEixom4PIw/vjUvDgl2QQbuTXbeCUHLlNCzOjg=
k8s.io/system-validators v1.0.4/go.mod h1:HgSgTg4NAGNoYYjKsUyk52gdNi2PVDswQ9Iyn66R7NI=
k8s.io/utils v0.0.0-20190801114015-581e00157fb1/go.mod h1:sZAwmy6armz5eXlNoLmJcl4F1QuKu7sr+mFQ0byX7Ew=
k8s.io/utils v0.0.0-20191114184206-e782cd3c129f h1:GiPwtSzdP43eI1hpPCbROQCCIgCuiMMNF8YUVLF3vJo=
k8s.io/utils v0.0.0-20191114184206-e782cd3c129f/go.mod h1:sZAwmy6armz5eXlNoLmJcl4F1QuKu7sr+mFQ0byX7Ew=
k8s.io/utils v0.0.0-20200324210504-a9aa75ae1b89 h1:d4vVOjXm687F1iLSP2q3lyPPuyvTUt3aVoBpi2DqRsU=
k8s.io/utils v0.0.0-20200324210504-a9aa75ae1b89/go.mod h1:sZAwmy6armz5eXlNoLmJcl4F1QuKu7sr+mFQ0byX7Ew=
modernc.org/cc v1.0.0/go.mod h1:1Sk4//wdnYJiUIxnW8ddKpaOJCF37yAdqYnkxUpaYxw=
modernc.org/golex v1.0.0/go.mod h1:b/QX9oBD/LhixY6NDh+IdGv17hgB+51fET1i2kPSmvk=
modernc.org/mathutil v1.0.0/go.mod h1:wU0vUrJsVWBZ4P6e7xtFJEhFSNsfRLJ8H458uRjg03k=
@ -981,15 +989,17 @@ mvdan.cc/lint v0.0.0-20170908181259-adc824a0674b/go.mod h1:2odslEg/xrtNQqCYg2/jC
mvdan.cc/unparam v0.0.0-20190209190245-fbb59629db34/go.mod h1:H6SUd1XjIs+qQCyskXg5OFSrilMRUkD8ePJpHKDPaeY=
pault.ag/go/sniff v0.0.0-20200207005214-cf7e4d167732 h1:SAElp8THCfmBdM+4lmWX5gebiSSkEr7PAYDVF91qpfg=
pault.ag/go/sniff v0.0.0-20200207005214-cf7e4d167732/go.mod h1:lpvCfhqEHNJSSpG5R5A2EgsVzG8RTt4RfPoQuRAcDmg=
sigs.k8s.io/controller-runtime v0.4.0 h1:wATM6/m+3w8lj8FXNaO6Fs/rq/vqoOjO1Q116Z9NPsg=
sigs.k8s.io/controller-runtime v0.4.0/go.mod h1:ApC79lpY3PHW9xj/w9pj+lYkLgwAAUZwfXkME1Lajns=
rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4=
sigs.k8s.io/apiserver-network-proxy/konnectivity-client v0.0.7/go.mod h1:PHgbrJT7lCHcxMU+mDHEm+nx46H4zuuHZkDP6icnhu0=
sigs.k8s.io/controller-runtime v0.5.1-0.20200327213554-2d4c4877f906 h1:GmjdjkxJjSpke49jWgDxBsd9uuHFdxEkBntoImFd2D8=
sigs.k8s.io/controller-runtime v0.5.1-0.20200327213554-2d4c4877f906/go.mod h1:j4echH3Y/UPHRpXS65rxGXujda8iWOheMQvDh1uNgaY=
sigs.k8s.io/kustomize v2.0.3+incompatible h1:JUufWFNlI44MdtnjUqVnvh29rR37PQFzPbLXqhyOyX0=
sigs.k8s.io/kustomize v2.0.3+incompatible/go.mod h1:MkjgH3RdOWrievjo6c9T245dYlB5QeXV4WCbnt/PEpU=
sigs.k8s.io/structured-merge-diff v0.0.0-20190525122527-15d366b2352e/go.mod h1:wWxsB5ozmmv/SG7nM11ayaAW51xMvak/t1r0CSlcokI=
sigs.k8s.io/structured-merge-diff v1.0.1-0.20191108220359-b1b620dd3f06/go.mod h1:/ULNhyfzRopfcjskuui0cTITekDduZ7ycKN3oUT9R18=
sigs.k8s.io/testing_frameworks v0.1.2 h1:vK0+tvjF0BZ/RYFeZ1E6BYBwHJJXhjuZ3TdsEKH+UQM=
sigs.k8s.io/testing_frameworks v0.1.2/go.mod h1:ToQrwSC3s8Xf/lADdZp3Mktcql9CG0UAmdJG9th5i0w=
sigs.k8s.io/structured-merge-diff/v3 v3.0.0-20200116222232-67a7b8c61874/go.mod h1:PlARxl6Hbt/+BC80dRLi1qAmnMqwqDg62YvvVkZjemw=
sigs.k8s.io/structured-merge-diff/v3 v3.0.0 h1:dOmIZBMfhcHS09XZkMyUgkq5trg3/jRyJYFZUiaOp8E=
sigs.k8s.io/structured-merge-diff/v3 v3.0.0/go.mod h1:PlARxl6Hbt/+BC80dRLi1qAmnMqwqDg62YvvVkZjemw=
sigs.k8s.io/yaml v1.1.0 h1:4A07+ZFc2wgJwo8YNlQpr1rVlgUDlxXHhPJciaPY5gs=
sigs.k8s.io/yaml v1.1.0/go.mod h1:UJmg0vDUVViEyp3mgSv9WPwZCDxu4rQW1olrI1uml+o=
sigs.k8s.io/yaml v1.2.0/go.mod h1:yfXDCHCao9+ENCvLSE62v9VSji2MKu5jeNfTrofGhJc=
sourcegraph.com/sqs/pbtypes v0.0.0-20180604144634-d3ebe8f20ae4/go.mod h1:ketZ/q3QxT9HOBeFhu6RdvsftgpsbFHBF5Cas6cDKZ0=
vbom.ml/util v0.0.0-20160121211510-db5cfe13f5cc/go.mod h1:so/NYdZXCz+E3ZpW0uAoCj6uzU2+8OWDFv/HxUSs7kI=

22
vendor/github.com/blang/semver/LICENSE generated vendored Normal file
View file

@ -0,0 +1,22 @@
The MIT License
Copyright (c) 2014 Benedikt Lang <github at benediktlang.de>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

191
vendor/github.com/blang/semver/README.md generated vendored Normal file
View file

@ -0,0 +1,191 @@
semver for golang [![Build Status](https://drone.io/github.com/blang/semver/status.png)](https://drone.io/github.com/blang/semver/latest) [![GoDoc](https://godoc.org/github.com/blang/semver?status.png)](https://godoc.org/github.com/blang/semver) [![Coverage Status](https://img.shields.io/coveralls/blang/semver.svg)](https://coveralls.io/r/blang/semver?branch=master)
======
semver is a [Semantic Versioning](http://semver.org/) library written in golang. It fully covers spec version `2.0.0`.
Usage
-----
```bash
$ go get github.com/blang/semver
```
Note: Always vendor your dependencies or fix on a specific version tag.
```go
import github.com/blang/semver
v1, err := semver.Make("1.0.0-beta")
v2, err := semver.Make("2.0.0-beta")
v1.Compare(v2)
```
Also check the [GoDocs](http://godoc.org/github.com/blang/semver).
Why should I use this lib?
-----
- Fully spec compatible
- No reflection
- No regex
- Fully tested (Coverage >99%)
- Readable parsing/validation errors
- Fast (See [Benchmarks](#benchmarks))
- Only Stdlib
- Uses values instead of pointers
- Many features, see below
Features
-----
- Parsing and validation at all levels
- Comparator-like comparisons
- Compare Helper Methods
- InPlace manipulation
- Ranges `>=1.0.0 <2.0.0 || >=3.0.0 !3.0.1-beta.1`
- Sortable (implements sort.Interface)
- database/sql compatible (sql.Scanner/Valuer)
- encoding/json compatible (json.Marshaler/Unmarshaler)
Ranges
------
A `Range` is a set of conditions which specify which versions satisfy the range.
A condition is composed of an operator and a version. The supported operators are:
- `<1.0.0` Less than `1.0.0`
- `<=1.0.0` Less than or equal to `1.0.0`
- `>1.0.0` Greater than `1.0.0`
- `>=1.0.0` Greater than or equal to `1.0.0`
- `1.0.0`, `=1.0.0`, `==1.0.0` Equal to `1.0.0`
- `!1.0.0`, `!=1.0.0` Not equal to `1.0.0`. Excludes version `1.0.0`.
A `Range` can link multiple `Ranges` separated by space:
Ranges can be linked by logical AND:
- `>1.0.0 <2.0.0` would match between both ranges, so `1.1.1` and `1.8.7` but not `1.0.0` or `2.0.0`
- `>1.0.0 <3.0.0 !2.0.3-beta.2` would match every version between `1.0.0` and `3.0.0` except `2.0.3-beta.2`
Ranges can also be linked by logical OR:
- `<2.0.0 || >=3.0.0` would match `1.x.x` and `3.x.x` but not `2.x.x`
AND has a higher precedence than OR. It's not possible to use brackets.
Ranges can be combined by both AND and OR
- `>1.0.0 <2.0.0 || >3.0.0 !4.2.1` would match `1.2.3`, `1.9.9`, `3.1.1`, but not `4.2.1`, `2.1.1`
Range usage:
```
v, err := semver.Parse("1.2.3")
range, err := semver.ParseRange(">1.0.0 <2.0.0 || >=3.0.0")
if range(v) {
//valid
}
```
Example
-----
Have a look at full examples in [examples/main.go](examples/main.go)
```go
import github.com/blang/semver
v, err := semver.Make("0.0.1-alpha.preview+123.github")
fmt.Printf("Major: %d\n", v.Major)
fmt.Printf("Minor: %d\n", v.Minor)
fmt.Printf("Patch: %d\n", v.Patch)
fmt.Printf("Pre: %s\n", v.Pre)
fmt.Printf("Build: %s\n", v.Build)
// Prerelease versions array
if len(v.Pre) > 0 {
fmt.Println("Prerelease versions:")
for i, pre := range v.Pre {
fmt.Printf("%d: %q\n", i, pre)
}
}
// Build meta data array
if len(v.Build) > 0 {
fmt.Println("Build meta data:")
for i, build := range v.Build {
fmt.Printf("%d: %q\n", i, build)
}
}
v001, err := semver.Make("0.0.1")
// Compare using helpers: v.GT(v2), v.LT, v.GTE, v.LTE
v001.GT(v) == true
v.LT(v001) == true
v.GTE(v) == true
v.LTE(v) == true
// Or use v.Compare(v2) for comparisons (-1, 0, 1):
v001.Compare(v) == 1
v.Compare(v001) == -1
v.Compare(v) == 0
// Manipulate Version in place:
v.Pre[0], err = semver.NewPRVersion("beta")
if err != nil {
fmt.Printf("Error parsing pre release version: %q", err)
}
fmt.Println("\nValidate versions:")
v.Build[0] = "?"
err = v.Validate()
if err != nil {
fmt.Printf("Validation failed: %s\n", err)
}
```
Benchmarks
-----
BenchmarkParseSimple-4 5000000 390 ns/op 48 B/op 1 allocs/op
BenchmarkParseComplex-4 1000000 1813 ns/op 256 B/op 7 allocs/op
BenchmarkParseAverage-4 1000000 1171 ns/op 163 B/op 4 allocs/op
BenchmarkStringSimple-4 20000000 119 ns/op 16 B/op 1 allocs/op
BenchmarkStringLarger-4 10000000 206 ns/op 32 B/op 2 allocs/op
BenchmarkStringComplex-4 5000000 324 ns/op 80 B/op 3 allocs/op
BenchmarkStringAverage-4 5000000 273 ns/op 53 B/op 2 allocs/op
BenchmarkValidateSimple-4 200000000 9.33 ns/op 0 B/op 0 allocs/op
BenchmarkValidateComplex-4 3000000 469 ns/op 0 B/op 0 allocs/op
BenchmarkValidateAverage-4 5000000 256 ns/op 0 B/op 0 allocs/op
BenchmarkCompareSimple-4 100000000 11.8 ns/op 0 B/op 0 allocs/op
BenchmarkCompareComplex-4 50000000 30.8 ns/op 0 B/op 0 allocs/op
BenchmarkCompareAverage-4 30000000 41.5 ns/op 0 B/op 0 allocs/op
BenchmarkSort-4 3000000 419 ns/op 256 B/op 2 allocs/op
BenchmarkRangeParseSimple-4 2000000 850 ns/op 192 B/op 5 allocs/op
BenchmarkRangeParseAverage-4 1000000 1677 ns/op 400 B/op 10 allocs/op
BenchmarkRangeParseComplex-4 300000 5214 ns/op 1440 B/op 30 allocs/op
BenchmarkRangeMatchSimple-4 50000000 25.6 ns/op 0 B/op 0 allocs/op
BenchmarkRangeMatchAverage-4 30000000 56.4 ns/op 0 B/op 0 allocs/op
BenchmarkRangeMatchComplex-4 10000000 153 ns/op 0 B/op 0 allocs/op
See benchmark cases at [semver_test.go](semver_test.go)
Motivation
-----
I simply couldn't find any lib supporting the full spec. Others were just wrong or used reflection and regex which i don't like.
Contribution
-----
Feel free to make a pull request. For bigger changes create a issue first to discuss about it.
License
-----
See [LICENSE](LICENSE) file.

23
vendor/github.com/blang/semver/json.go generated vendored Normal file
View file

@ -0,0 +1,23 @@
package semver
import (
"encoding/json"
)
// MarshalJSON implements the encoding/json.Marshaler interface.
func (v Version) MarshalJSON() ([]byte, error) {
return json.Marshal(v.String())
}
// UnmarshalJSON implements the encoding/json.Unmarshaler interface.
func (v *Version) UnmarshalJSON(data []byte) (err error) {
var versionString string
if err = json.Unmarshal(data, &versionString); err != nil {
return
}
*v, err = Parse(versionString)
return
}

17
vendor/github.com/blang/semver/package.json generated vendored Normal file
View file

@ -0,0 +1,17 @@
{
"author": "blang",
"bugs": {
"URL": "https://github.com/blang/semver/issues",
"url": "https://github.com/blang/semver/issues"
},
"gx": {
"dvcsimport": "github.com/blang/semver"
},
"gxVersion": "0.10.0",
"language": "go",
"license": "MIT",
"name": "semver",
"releaseCmd": "git commit -a -m \"gx publish $VERSION\"",
"version": "3.4.0"
}

416
vendor/github.com/blang/semver/range.go generated vendored Normal file
View file

@ -0,0 +1,416 @@
package semver
import (
"fmt"
"strconv"
"strings"
"unicode"
)
type wildcardType int
const (
noneWildcard wildcardType = iota
majorWildcard wildcardType = 1
minorWildcard wildcardType = 2
patchWildcard wildcardType = 3
)
func wildcardTypefromInt(i int) wildcardType {
switch i {
case 1:
return majorWildcard
case 2:
return minorWildcard
case 3:
return patchWildcard
default:
return noneWildcard
}
}
type comparator func(Version, Version) bool
var (
compEQ comparator = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) == 0
}
compNE = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) != 0
}
compGT = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) == 1
}
compGE = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) >= 0
}
compLT = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) == -1
}
compLE = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) <= 0
}
)
type versionRange struct {
v Version
c comparator
}
// rangeFunc creates a Range from the given versionRange.
func (vr *versionRange) rangeFunc() Range {
return Range(func(v Version) bool {
return vr.c(v, vr.v)
})
}
// Range represents a range of versions.
// A Range can be used to check if a Version satisfies it:
//
// range, err := semver.ParseRange(">1.0.0 <2.0.0")
// range(semver.MustParse("1.1.1") // returns true
type Range func(Version) bool
// OR combines the existing Range with another Range using logical OR.
func (rf Range) OR(f Range) Range {
return Range(func(v Version) bool {
return rf(v) || f(v)
})
}
// AND combines the existing Range with another Range using logical AND.
func (rf Range) AND(f Range) Range {
return Range(func(v Version) bool {
return rf(v) && f(v)
})
}
// ParseRange parses a range and returns a Range.
// If the range could not be parsed an error is returned.
//
// Valid ranges are:
// - "<1.0.0"
// - "<=1.0.0"
// - ">1.0.0"
// - ">=1.0.0"
// - "1.0.0", "=1.0.0", "==1.0.0"
// - "!1.0.0", "!=1.0.0"
//
// A Range can consist of multiple ranges separated by space:
// Ranges can be linked by logical AND:
// - ">1.0.0 <2.0.0" would match between both ranges, so "1.1.1" and "1.8.7" but not "1.0.0" or "2.0.0"
// - ">1.0.0 <3.0.0 !2.0.3-beta.2" would match every version between 1.0.0 and 3.0.0 except 2.0.3-beta.2
//
// Ranges can also be linked by logical OR:
// - "<2.0.0 || >=3.0.0" would match "1.x.x" and "3.x.x" but not "2.x.x"
//
// AND has a higher precedence than OR. It's not possible to use brackets.
//
// Ranges can be combined by both AND and OR
//
// - `>1.0.0 <2.0.0 || >3.0.0 !4.2.1` would match `1.2.3`, `1.9.9`, `3.1.1`, but not `4.2.1`, `2.1.1`
func ParseRange(s string) (Range, error) {
parts := splitAndTrim(s)
orParts, err := splitORParts(parts)
if err != nil {
return nil, err
}
expandedParts, err := expandWildcardVersion(orParts)
if err != nil {
return nil, err
}
var orFn Range
for _, p := range expandedParts {
var andFn Range
for _, ap := range p {
opStr, vStr, err := splitComparatorVersion(ap)
if err != nil {
return nil, err
}
vr, err := buildVersionRange(opStr, vStr)
if err != nil {
return nil, fmt.Errorf("Could not parse Range %q: %s", ap, err)
}
rf := vr.rangeFunc()
// Set function
if andFn == nil {
andFn = rf
} else { // Combine with existing function
andFn = andFn.AND(rf)
}
}
if orFn == nil {
orFn = andFn
} else {
orFn = orFn.OR(andFn)
}
}
return orFn, nil
}
// splitORParts splits the already cleaned parts by '||'.
// Checks for invalid positions of the operator and returns an
// error if found.
func splitORParts(parts []string) ([][]string, error) {
var ORparts [][]string
last := 0
for i, p := range parts {
if p == "||" {
if i == 0 {
return nil, fmt.Errorf("First element in range is '||'")
}
ORparts = append(ORparts, parts[last:i])
last = i + 1
}
}
if last == len(parts) {
return nil, fmt.Errorf("Last element in range is '||'")
}
ORparts = append(ORparts, parts[last:])
return ORparts, nil
}
// buildVersionRange takes a slice of 2: operator and version
// and builds a versionRange, otherwise an error.
func buildVersionRange(opStr, vStr string) (*versionRange, error) {
c := parseComparator(opStr)
if c == nil {
return nil, fmt.Errorf("Could not parse comparator %q in %q", opStr, strings.Join([]string{opStr, vStr}, ""))
}
v, err := Parse(vStr)
if err != nil {
return nil, fmt.Errorf("Could not parse version %q in %q: %s", vStr, strings.Join([]string{opStr, vStr}, ""), err)
}
return &versionRange{
v: v,
c: c,
}, nil
}
// inArray checks if a byte is contained in an array of bytes
func inArray(s byte, list []byte) bool {
for _, el := range list {
if el == s {
return true
}
}
return false
}
// splitAndTrim splits a range string by spaces and cleans whitespaces
func splitAndTrim(s string) (result []string) {
last := 0
var lastChar byte
excludeFromSplit := []byte{'>', '<', '='}
for i := 0; i < len(s); i++ {
if s[i] == ' ' && !inArray(lastChar, excludeFromSplit) {
if last < i-1 {
result = append(result, s[last:i])
}
last = i + 1
} else if s[i] != ' ' {
lastChar = s[i]
}
}
if last < len(s)-1 {
result = append(result, s[last:])
}
for i, v := range result {
result[i] = strings.Replace(v, " ", "", -1)
}
// parts := strings.Split(s, " ")
// for _, x := range parts {
// if s := strings.TrimSpace(x); len(s) != 0 {
// result = append(result, s)
// }
// }
return
}
// splitComparatorVersion splits the comparator from the version.
// Input must be free of leading or trailing spaces.
func splitComparatorVersion(s string) (string, string, error) {
i := strings.IndexFunc(s, unicode.IsDigit)
if i == -1 {
return "", "", fmt.Errorf("Could not get version from string: %q", s)
}
return strings.TrimSpace(s[0:i]), s[i:], nil
}
// getWildcardType will return the type of wildcard that the
// passed version contains
func getWildcardType(vStr string) wildcardType {
parts := strings.Split(vStr, ".")
nparts := len(parts)
wildcard := parts[nparts-1]
possibleWildcardType := wildcardTypefromInt(nparts)
if wildcard == "x" {
return possibleWildcardType
}
return noneWildcard
}
// createVersionFromWildcard will convert a wildcard version
// into a regular version, replacing 'x's with '0's, handling
// special cases like '1.x.x' and '1.x'
func createVersionFromWildcard(vStr string) string {
// handle 1.x.x
vStr2 := strings.Replace(vStr, ".x.x", ".x", 1)
vStr2 = strings.Replace(vStr2, ".x", ".0", 1)
parts := strings.Split(vStr2, ".")
// handle 1.x
if len(parts) == 2 {
return vStr2 + ".0"
}
return vStr2
}
// incrementMajorVersion will increment the major version
// of the passed version
func incrementMajorVersion(vStr string) (string, error) {
parts := strings.Split(vStr, ".")
i, err := strconv.Atoi(parts[0])
if err != nil {
return "", err
}
parts[0] = strconv.Itoa(i + 1)
return strings.Join(parts, "."), nil
}
// incrementMajorVersion will increment the minor version
// of the passed version
func incrementMinorVersion(vStr string) (string, error) {
parts := strings.Split(vStr, ".")
i, err := strconv.Atoi(parts[1])
if err != nil {
return "", err
}
parts[1] = strconv.Itoa(i + 1)
return strings.Join(parts, "."), nil
}
// expandWildcardVersion will expand wildcards inside versions
// following these rules:
//
// * when dealing with patch wildcards:
// >= 1.2.x will become >= 1.2.0
// <= 1.2.x will become < 1.3.0
// > 1.2.x will become >= 1.3.0
// < 1.2.x will become < 1.2.0
// != 1.2.x will become < 1.2.0 >= 1.3.0
//
// * when dealing with minor wildcards:
// >= 1.x will become >= 1.0.0
// <= 1.x will become < 2.0.0
// > 1.x will become >= 2.0.0
// < 1.0 will become < 1.0.0
// != 1.x will become < 1.0.0 >= 2.0.0
//
// * when dealing with wildcards without
// version operator:
// 1.2.x will become >= 1.2.0 < 1.3.0
// 1.x will become >= 1.0.0 < 2.0.0
func expandWildcardVersion(parts [][]string) ([][]string, error) {
var expandedParts [][]string
for _, p := range parts {
var newParts []string
for _, ap := range p {
if strings.Index(ap, "x") != -1 {
opStr, vStr, err := splitComparatorVersion(ap)
if err != nil {
return nil, err
}
versionWildcardType := getWildcardType(vStr)
flatVersion := createVersionFromWildcard(vStr)
var resultOperator string
var shouldIncrementVersion bool
switch opStr {
case ">":
resultOperator = ">="
shouldIncrementVersion = true
case ">=":
resultOperator = ">="
case "<":
resultOperator = "<"
case "<=":
resultOperator = "<"
shouldIncrementVersion = true
case "", "=", "==":
newParts = append(newParts, ">="+flatVersion)
resultOperator = "<"
shouldIncrementVersion = true
case "!=", "!":
newParts = append(newParts, "<"+flatVersion)
resultOperator = ">="
shouldIncrementVersion = true
}
var resultVersion string
if shouldIncrementVersion {
switch versionWildcardType {
case patchWildcard:
resultVersion, _ = incrementMinorVersion(flatVersion)
case minorWildcard:
resultVersion, _ = incrementMajorVersion(flatVersion)
}
} else {
resultVersion = flatVersion
}
ap = resultOperator + resultVersion
}
newParts = append(newParts, ap)
}
expandedParts = append(expandedParts, newParts)
}
return expandedParts, nil
}
func parseComparator(s string) comparator {
switch s {
case "==":
fallthrough
case "":
fallthrough
case "=":
return compEQ
case ">":
return compGT
case ">=":
return compGE
case "<":
return compLT
case "<=":
return compLE
case "!":
fallthrough
case "!=":
return compNE
}
return nil
}
// MustParseRange is like ParseRange but panics if the range cannot be parsed.
func MustParseRange(s string) Range {
r, err := ParseRange(s)
if err != nil {
panic(`semver: ParseRange(` + s + `): ` + err.Error())
}
return r
}

418
vendor/github.com/blang/semver/semver.go generated vendored Normal file
View file

@ -0,0 +1,418 @@
package semver
import (
"errors"
"fmt"
"strconv"
"strings"
)
const (
numbers string = "0123456789"
alphas = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-"
alphanum = alphas + numbers
)
// SpecVersion is the latest fully supported spec version of semver
var SpecVersion = Version{
Major: 2,
Minor: 0,
Patch: 0,
}
// Version represents a semver compatible version
type Version struct {
Major uint64
Minor uint64
Patch uint64
Pre []PRVersion
Build []string //No Precendence
}
// Version to string
func (v Version) String() string {
b := make([]byte, 0, 5)
b = strconv.AppendUint(b, v.Major, 10)
b = append(b, '.')
b = strconv.AppendUint(b, v.Minor, 10)
b = append(b, '.')
b = strconv.AppendUint(b, v.Patch, 10)
if len(v.Pre) > 0 {
b = append(b, '-')
b = append(b, v.Pre[0].String()...)
for _, pre := range v.Pre[1:] {
b = append(b, '.')
b = append(b, pre.String()...)
}
}
if len(v.Build) > 0 {
b = append(b, '+')
b = append(b, v.Build[0]...)
for _, build := range v.Build[1:] {
b = append(b, '.')
b = append(b, build...)
}
}
return string(b)
}
// Equals checks if v is equal to o.
func (v Version) Equals(o Version) bool {
return (v.Compare(o) == 0)
}
// EQ checks if v is equal to o.
func (v Version) EQ(o Version) bool {
return (v.Compare(o) == 0)
}
// NE checks if v is not equal to o.
func (v Version) NE(o Version) bool {
return (v.Compare(o) != 0)
}
// GT checks if v is greater than o.
func (v Version) GT(o Version) bool {
return (v.Compare(o) == 1)
}
// GTE checks if v is greater than or equal to o.
func (v Version) GTE(o Version) bool {
return (v.Compare(o) >= 0)
}
// GE checks if v is greater than or equal to o.
func (v Version) GE(o Version) bool {
return (v.Compare(o) >= 0)
}
// LT checks if v is less than o.
func (v Version) LT(o Version) bool {
return (v.Compare(o) == -1)
}
// LTE checks if v is less than or equal to o.
func (v Version) LTE(o Version) bool {
return (v.Compare(o) <= 0)
}
// LE checks if v is less than or equal to o.
func (v Version) LE(o Version) bool {
return (v.Compare(o) <= 0)
}
// Compare compares Versions v to o:
// -1 == v is less than o
// 0 == v is equal to o
// 1 == v is greater than o
func (v Version) Compare(o Version) int {
if v.Major != o.Major {
if v.Major > o.Major {
return 1
}
return -1
}
if v.Minor != o.Minor {
if v.Minor > o.Minor {
return 1
}
return -1
}
if v.Patch != o.Patch {
if v.Patch > o.Patch {
return 1
}
return -1
}
// Quick comparison if a version has no prerelease versions
if len(v.Pre) == 0 && len(o.Pre) == 0 {
return 0
} else if len(v.Pre) == 0 && len(o.Pre) > 0 {
return 1
} else if len(v.Pre) > 0 && len(o.Pre) == 0 {
return -1
}
i := 0
for ; i < len(v.Pre) && i < len(o.Pre); i++ {
if comp := v.Pre[i].Compare(o.Pre[i]); comp == 0 {
continue
} else if comp == 1 {
return 1
} else {
return -1
}
}
// If all pr versions are the equal but one has further prversion, this one greater
if i == len(v.Pre) && i == len(o.Pre) {
return 0
} else if i == len(v.Pre) && i < len(o.Pre) {
return -1
} else {
return 1
}
}
// Validate validates v and returns error in case
func (v Version) Validate() error {
// Major, Minor, Patch already validated using uint64
for _, pre := range v.Pre {
if !pre.IsNum { //Numeric prerelease versions already uint64
if len(pre.VersionStr) == 0 {
return fmt.Errorf("Prerelease can not be empty %q", pre.VersionStr)
}
if !containsOnly(pre.VersionStr, alphanum) {
return fmt.Errorf("Invalid character(s) found in prerelease %q", pre.VersionStr)
}
}
}
for _, build := range v.Build {
if len(build) == 0 {
return fmt.Errorf("Build meta data can not be empty %q", build)
}
if !containsOnly(build, alphanum) {
return fmt.Errorf("Invalid character(s) found in build meta data %q", build)
}
}
return nil
}
// New is an alias for Parse and returns a pointer, parses version string and returns a validated Version or error
func New(s string) (vp *Version, err error) {
v, err := Parse(s)
vp = &v
return
}
// Make is an alias for Parse, parses version string and returns a validated Version or error
func Make(s string) (Version, error) {
return Parse(s)
}
// ParseTolerant allows for certain version specifications that do not strictly adhere to semver
// specs to be parsed by this library. It does so by normalizing versions before passing them to
// Parse(). It currently trims spaces, removes a "v" prefix, and adds a 0 patch number to versions
// with only major and minor components specified
func ParseTolerant(s string) (Version, error) {
s = strings.TrimSpace(s)
s = strings.TrimPrefix(s, "v")
// Split into major.minor.(patch+pr+meta)
parts := strings.SplitN(s, ".", 3)
if len(parts) < 3 {
if strings.ContainsAny(parts[len(parts)-1], "+-") {
return Version{}, errors.New("Short version cannot contain PreRelease/Build meta data")
}
for len(parts) < 3 {
parts = append(parts, "0")
}
s = strings.Join(parts, ".")
}
return Parse(s)
}
// Parse parses version string and returns a validated Version or error
func Parse(s string) (Version, error) {
if len(s) == 0 {
return Version{}, errors.New("Version string empty")
}
// Split into major.minor.(patch+pr+meta)
parts := strings.SplitN(s, ".", 3)
if len(parts) != 3 {
return Version{}, errors.New("No Major.Minor.Patch elements found")
}
// Major
if !containsOnly(parts[0], numbers) {
return Version{}, fmt.Errorf("Invalid character(s) found in major number %q", parts[0])
}
if hasLeadingZeroes(parts[0]) {
return Version{}, fmt.Errorf("Major number must not contain leading zeroes %q", parts[0])
}
major, err := strconv.ParseUint(parts[0], 10, 64)
if err != nil {
return Version{}, err
}
// Minor
if !containsOnly(parts[1], numbers) {
return Version{}, fmt.Errorf("Invalid character(s) found in minor number %q", parts[1])
}
if hasLeadingZeroes(parts[1]) {
return Version{}, fmt.Errorf("Minor number must not contain leading zeroes %q", parts[1])
}
minor, err := strconv.ParseUint(parts[1], 10, 64)
if err != nil {
return Version{}, err
}
v := Version{}
v.Major = major
v.Minor = minor
var build, prerelease []string
patchStr := parts[2]
if buildIndex := strings.IndexRune(patchStr, '+'); buildIndex != -1 {
build = strings.Split(patchStr[buildIndex+1:], ".")
patchStr = patchStr[:buildIndex]
}
if preIndex := strings.IndexRune(patchStr, '-'); preIndex != -1 {
prerelease = strings.Split(patchStr[preIndex+1:], ".")
patchStr = patchStr[:preIndex]
}
if !containsOnly(patchStr, numbers) {
return Version{}, fmt.Errorf("Invalid character(s) found in patch number %q", patchStr)
}
if hasLeadingZeroes(patchStr) {
return Version{}, fmt.Errorf("Patch number must not contain leading zeroes %q", patchStr)
}
patch, err := strconv.ParseUint(patchStr, 10, 64)
if err != nil {
return Version{}, err
}
v.Patch = patch
// Prerelease
for _, prstr := range prerelease {
parsedPR, err := NewPRVersion(prstr)
if err != nil {
return Version{}, err
}
v.Pre = append(v.Pre, parsedPR)
}
// Build meta data
for _, str := range build {
if len(str) == 0 {
return Version{}, errors.New("Build meta data is empty")
}
if !containsOnly(str, alphanum) {
return Version{}, fmt.Errorf("Invalid character(s) found in build meta data %q", str)
}
v.Build = append(v.Build, str)
}
return v, nil
}
// MustParse is like Parse but panics if the version cannot be parsed.
func MustParse(s string) Version {
v, err := Parse(s)
if err != nil {
panic(`semver: Parse(` + s + `): ` + err.Error())
}
return v
}
// PRVersion represents a PreRelease Version
type PRVersion struct {
VersionStr string
VersionNum uint64
IsNum bool
}
// NewPRVersion creates a new valid prerelease version
func NewPRVersion(s string) (PRVersion, error) {
if len(s) == 0 {
return PRVersion{}, errors.New("Prerelease is empty")
}
v := PRVersion{}
if containsOnly(s, numbers) {
if hasLeadingZeroes(s) {
return PRVersion{}, fmt.Errorf("Numeric PreRelease version must not contain leading zeroes %q", s)
}
num, err := strconv.ParseUint(s, 10, 64)
// Might never be hit, but just in case
if err != nil {
return PRVersion{}, err
}
v.VersionNum = num
v.IsNum = true
} else if containsOnly(s, alphanum) {
v.VersionStr = s
v.IsNum = false
} else {
return PRVersion{}, fmt.Errorf("Invalid character(s) found in prerelease %q", s)
}
return v, nil
}
// IsNumeric checks if prerelease-version is numeric
func (v PRVersion) IsNumeric() bool {
return v.IsNum
}
// Compare compares two PreRelease Versions v and o:
// -1 == v is less than o
// 0 == v is equal to o
// 1 == v is greater than o
func (v PRVersion) Compare(o PRVersion) int {
if v.IsNum && !o.IsNum {
return -1
} else if !v.IsNum && o.IsNum {
return 1
} else if v.IsNum && o.IsNum {
if v.VersionNum == o.VersionNum {
return 0
} else if v.VersionNum > o.VersionNum {
return 1
} else {
return -1
}
} else { // both are Alphas
if v.VersionStr == o.VersionStr {
return 0
} else if v.VersionStr > o.VersionStr {
return 1
} else {
return -1
}
}
}
// PreRelease version to string
func (v PRVersion) String() string {
if v.IsNum {
return strconv.FormatUint(v.VersionNum, 10)
}
return v.VersionStr
}
func containsOnly(s string, set string) bool {
return strings.IndexFunc(s, func(r rune) bool {
return !strings.ContainsRune(set, r)
}) == -1
}
func hasLeadingZeroes(s string) bool {
return len(s) > 1 && s[0] == '0'
}
// NewBuildVersion creates a new valid build version
func NewBuildVersion(s string) (string, error) {
if len(s) == 0 {
return "", errors.New("Buildversion is empty")
}
if !containsOnly(s, alphanum) {
return "", fmt.Errorf("Invalid character(s) found in build meta data %q", s)
}
return s, nil
}

28
vendor/github.com/blang/semver/sort.go generated vendored Normal file
View file

@ -0,0 +1,28 @@
package semver
import (
"sort"
)
// Versions represents multiple versions.
type Versions []Version
// Len returns length of version collection
func (s Versions) Len() int {
return len(s)
}
// Swap swaps two versions inside the collection by its indices
func (s Versions) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
// Less checks if version at index i is less than version at index j
func (s Versions) Less(i, j int) bool {
return s[i].LT(s[j])
}
// Sort sorts a slice of versions
func Sort(versions []Version) {
sort.Sort(Versions(versions))
}

30
vendor/github.com/blang/semver/sql.go generated vendored Normal file
View file

@ -0,0 +1,30 @@
package semver
import (
"database/sql/driver"
"fmt"
)
// Scan implements the database/sql.Scanner interface.
func (v *Version) Scan(src interface{}) (err error) {
var str string
switch src := src.(type) {
case string:
str = src
case []byte:
str = string(src)
default:
return fmt.Errorf("Version.Scan: cannot convert %T to string.", src)
}
if t, err := Parse(str); err == nil {
*v = t
}
return
}
// Value implements the database/sql/driver.Valuer interface.
func (v Version) Value() (driver.Value, error) {
return v.String(), nil
}

View file

@ -19,7 +19,7 @@ var _ = math.Inf
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.GoGoProtoPackageIsVersion2 // please upgrade the proto package
const _ = proto.GoGoProtoPackageIsVersion3 // please upgrade the proto package
var E_GoprotoEnumPrefix = &proto.ExtensionDesc{
ExtendedType: (*descriptor.EnumOptions)(nil),

View file

@ -189,6 +189,8 @@ type Marshaler interface {
// prefixed by a varint-encoded length.
func (p *Buffer) EncodeMessage(pb Message) error {
siz := Size(pb)
sizVar := SizeVarint(uint64(siz))
p.grow(siz + sizVar)
p.EncodeVarint(uint64(siz))
return p.Marshal(pb)
}

View file

@ -948,13 +948,19 @@ func isProto3Zero(v reflect.Value) bool {
return false
}
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const GoGoProtoPackageIsVersion2 = true
const (
// ProtoPackageIsVersion3 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
GoGoProtoPackageIsVersion3 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const GoGoProtoPackageIsVersion1 = true
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
GoGoProtoPackageIsVersion2 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
GoGoProtoPackageIsVersion1 = true
)
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.

View file

@ -43,7 +43,6 @@ package proto
import (
"fmt"
"log"
"os"
"reflect"
"sort"
"strconv"
@ -205,7 +204,7 @@ func (p *Properties) Parse(s string) {
// "bytes,49,opt,name=foo,def=hello!"
fields := strings.Split(s, ",") // breaks def=, but handled below.
if len(fields) < 2 {
fmt.Fprintf(os.Stderr, "proto: tag has too few fields: %q\n", s)
log.Printf("proto: tag has too few fields: %q", s)
return
}
@ -225,7 +224,7 @@ func (p *Properties) Parse(s string) {
p.WireType = WireBytes
// no numeric converter for non-numeric types
default:
fmt.Fprintf(os.Stderr, "proto: tag has unknown wire type: %q\n", s)
log.Printf("proto: tag has unknown wire type: %q", s)
return
}
@ -400,6 +399,15 @@ func GetProperties(t reflect.Type) *StructProperties {
return sprop
}
type (
oneofFuncsIface interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
oneofWrappersIface interface {
XXX_OneofWrappers() []interface{}
}
)
// getPropertiesLocked requires that propertiesMu is held.
func getPropertiesLocked(t reflect.Type) *StructProperties {
if prop, ok := propertiesMap[t]; ok {
@ -441,13 +449,15 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
// Re-order prop.order.
sort.Sort(prop)
type oneofMessage interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); isOneofMessage && ok {
if isOneofMessage {
var oots []interface{}
_, _, _, oots = om.XXX_OneofFuncs()
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oots = m.XXX_OneofFuncs()
case oneofWrappersIface:
oots = m.XXX_OneofWrappers()
}
if len(oots) > 0 {
// Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties)
for _, oot := range oots {
@ -474,6 +484,7 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
prop.OneofTypes[oop.Prop.OrigName] = oop
}
}
}
// build required counts
// build tags

View file

@ -389,8 +389,13 @@ func (u *marshalInfo) computeMarshalInfo() {
// get oneof implementers
var oneofImplementers []interface{}
// gogo: isOneofMessage is needed for embedded oneof messages, without a marshaler and unmarshaler
if m, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok && isOneofMessage {
if isOneofMessage {
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
case oneofWrappersIface:
oneofImplementers = m.XXX_OneofWrappers()
}
}
// normal fields
@ -519,10 +524,6 @@ func (fi *marshalFieldInfo) computeOneofFieldInfo(f *reflect.StructField, oneofI
}
}
type oneofMessage interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
// wiretype returns the wire encoding of the type.
func wiretype(encoding string) uint64 {
switch encoding {
@ -2968,7 +2969,9 @@ func (p *Buffer) Marshal(pb Message) error {
if m, ok := pb.(newMarshaler); ok {
siz := m.XXX_Size()
p.grow(siz) // make sure buf has enough capacity
p.buf, err = m.XXX_Marshal(p.buf, p.deterministic)
pp := p.buf[len(p.buf) : len(p.buf) : len(p.buf)+siz]
pp, err = m.XXX_Marshal(pp, p.deterministic)
p.buf = append(p.buf, pp...)
return err
}
if m, ok := pb.(Marshaler); ok {

View file

@ -530,6 +530,25 @@ func (mi *mergeInfo) computeMergeInfo() {
}
case reflect.Struct:
switch {
case isSlice && !isPointer: // E.g. []pb.T
mergeInfo := getMergeInfo(tf)
zero := reflect.Zero(tf)
mfi.merge = func(dst, src pointer) {
// TODO: Make this faster?
dstsp := dst.asPointerTo(f.Type)
dsts := dstsp.Elem()
srcs := src.asPointerTo(f.Type).Elem()
for i := 0; i < srcs.Len(); i++ {
dsts = reflect.Append(dsts, zero)
srcElement := srcs.Index(i).Addr()
dstElement := dsts.Index(dsts.Len() - 1).Addr()
mergeInfo.merge(valToPointer(dstElement), valToPointer(srcElement))
}
if dsts.IsNil() {
dsts = reflect.MakeSlice(f.Type, 0, 0)
}
dstsp.Elem().Set(dsts)
}
case !isPointer:
mergeInfo := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {

View file

@ -371,14 +371,17 @@ func (u *unmarshalInfo) computeUnmarshalInfo() {
}
// Find any types associated with oneof fields.
// TODO: XXX_OneofFuncs returns more info than we need. Get rid of some of it?
fn := reflect.Zero(reflect.PtrTo(t)).MethodByName("XXX_OneofFuncs")
// gogo: len(oneofFields) > 0 is needed for embedded oneof messages, without a marshaler and unmarshaler
if fn.IsValid() && len(oneofFields) > 0 {
res := fn.Call(nil)[3] // last return value from XXX_OneofFuncs: []interface{}
for i := res.Len() - 1; i >= 0; i-- {
v := res.Index(i) // interface{}
tptr := reflect.ValueOf(v.Interface()).Type() // *Msg_X
if len(oneofFields) > 0 {
var oneofImplementers []interface{}
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
case oneofWrappersIface:
oneofImplementers = m.XXX_OneofWrappers()
}
for _, v := range oneofImplementers {
tptr := reflect.TypeOf(v) // *Msg_X
typ := tptr.Elem() // Msg_X
f := typ.Field(0) // oneof implementers have one field
@ -407,11 +410,12 @@ func (u *unmarshalInfo) computeUnmarshalInfo() {
u.setTag(fieldNum, of.field, unmarshal, 0, name)
}
}
}
}
// Get extension ranges, if any.
fn = reflect.Zero(reflect.PtrTo(t)).MethodByName("ExtensionRangeArray")
fn := reflect.Zero(reflect.PtrTo(t)).MethodByName("ExtensionRangeArray")
if fn.IsValid() {
if !u.extensions.IsValid() && !u.oldExtensions.IsValid() && !u.bytesExtensions.IsValid() {
panic("a message with extensions, but no extensions field in " + t.Name())

View file

@ -476,6 +476,8 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return nil
}
var textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
// writeAny writes an arbitrary field.
func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Properties) error {
v = reflect.Indirect(v)
@ -589,8 +591,8 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
// mutating this value.
v = v.Addr()
}
if etm, ok := v.Interface().(encoding.TextMarshaler); ok {
text, err := etm.MarshalText()
if v.Type().Implements(textMarshalerType) {
text, err := v.Interface().(encoding.TextMarshaler).MarshalText()
if err != nil {
return err
}

View file

@ -18,7 +18,7 @@ var _ = math.Inf
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.GoGoProtoPackageIsVersion2 // please upgrade the proto package
const _ = proto.GoGoProtoPackageIsVersion3 // please upgrade the proto package
type FieldDescriptorProto_Type int32
@ -1364,8 +1364,8 @@ type FileOptions struct {
// determining the namespace.
PhpNamespace *string `protobuf:"bytes,41,opt,name=php_namespace,json=phpNamespace" json:"php_namespace,omitempty"`
// Use this option to change the namespace of php generated metadata classes.
// Default is empty. When this option is empty, the proto file name will be used
// for determining the namespace.
// Default is empty. When this option is empty, the proto file name will be
// used for determining the namespace.
PhpMetadataNamespace *string `protobuf:"bytes,44,opt,name=php_metadata_namespace,json=phpMetadataNamespace" json:"php_metadata_namespace,omitempty"`
// Use this option to change the package of ruby generated classes. Default
// is empty. When this option is not set, the package name will be used for
@ -1615,7 +1615,7 @@ type MessageOptions struct {
//
// Implementations may choose not to generate the map_entry=true message, but
// use a native map in the target language to hold the keys and values.
// The reflection APIs in such implementions still need to work as
// The reflection APIs in such implementations still need to work as
// if the field is a repeated message field.
//
// NOTE: Do not set the option in .proto files. Always use the maps syntax
@ -2363,7 +2363,7 @@ type SourceCodeInfo struct {
// beginning of the "extend" block and is shared by all extensions within
// the block.
// - Just because a location's span is a subset of some other location's span
// does not mean that it is a descendent. For example, a "group" defines
// does not mean that it is a descendant. For example, a "group" defines
// both a type and a field in a single declaration. Thus, the locations
// corresponding to the type and field and their components will overlap.
// - Code which tries to interpret locations should probably be designed to

View file

@ -3,7 +3,7 @@ gofuzz
gofuzz is a library for populating go objects with random values.
[![GoDoc](https://godoc.org/github.com/google/gofuzz?status.png)](https://godoc.org/github.com/google/gofuzz)
[![GoDoc](https://godoc.org/github.com/google/gofuzz?status.svg)](https://godoc.org/github.com/google/gofuzz)
[![Travis](https://travis-ci.org/google/gofuzz.svg?branch=master)](https://travis-ci.org/google/gofuzz)
This is useful for testing:

View file

@ -20,6 +20,7 @@ import (
"fmt"
"math/rand"
"reflect"
"regexp"
"time"
)
@ -35,6 +36,7 @@ type Fuzzer struct {
minElements int
maxElements int
maxDepth int
skipFieldPatterns []*regexp.Regexp
}
// New returns a new Fuzzer. Customize your Fuzzer further by calling Funcs,
@ -150,6 +152,13 @@ func (f *Fuzzer) MaxDepth(d int) *Fuzzer {
return f
}
// Skip fields which match the supplied pattern. Call this multiple times if needed
// This is useful to skip XXX_ fields generated by protobuf
func (f *Fuzzer) SkipFieldsWithPattern(pattern *regexp.Regexp) *Fuzzer {
f.skipFieldPatterns = append(f.skipFieldPatterns, pattern)
return f
}
// Fuzz recursively fills all of obj's fields with something random. First
// this tries to find a custom fuzz function (see Funcs). If there is no
// custom function this tests whether the object implements fuzz.Interface and,
@ -274,8 +283,18 @@ func (fc *fuzzerContext) doFuzz(v reflect.Value, flags uint64) {
v.Set(reflect.Zero(v.Type()))
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
skipField := false
fieldName := v.Type().Field(i).Name
for _, pattern := range fc.fuzzer.skipFieldPatterns {
if pattern.MatchString(fieldName) {
skipField = true
break
}
}
if !skipField {
fc.doFuzz(v.Field(i), 0)
}
}
case reflect.Chan:
fallthrough
case reflect.Func:

View file

@ -1,9 +1,8 @@
language: go
go:
- 1.10.x
- 1.11.x
- 1.12.x
- 1.13.x
- gotip
env:

View file

@ -1,3 +1,14 @@
## 1.8.1
### Fixes
- Fix unexpected MatchError() behaviour (#375) [8ae7b2f]
## 1.8.0
### Features
- Allow optional description to be lazily evaluated function (#364) [bf64010]
- Support wrapped errors (#359) [0a981cb]
## 1.7.1
### Fixes

View file

@ -9,6 +9,7 @@ require (
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f // indirect
golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e // indirect
golang.org/x/text v0.3.0 // indirect
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7
gopkg.in/fsnotify.v1 v1.4.7 // indirect
gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7 // indirect
gopkg.in/yaml.v2 v2.2.4

View file

@ -14,6 +14,8 @@ golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e h1:o3PsSEY8E4eXWkXrIP9YJALUk
golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/text v0.3.0 h1:g61tztE5qeGQ89tm6NTjjM9VPIm088od1l6aSorWRWg=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7 h1:9zdDQZ7Thm29KFXgAX/+yaf3eVbP7djjWp/dXAppNCc=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/fsnotify.v1 v1.4.7 h1:xOHLXZwVvI9hhs+cLKq5+I5onOuwQLhQwiu63xxlHs4=

View file

@ -24,7 +24,7 @@ import (
"github.com/onsi/gomega/types"
)
const GOMEGA_VERSION = "1.7.1"
const GOMEGA_VERSION = "1.8.1"
const nilFailHandlerPanic = `You are trying to make an assertion, but Gomega's fail handler is nil.
If you're using Ginkgo then you probably forgot to put your assertion in an It().
@ -293,16 +293,18 @@ func SetDefaultConsistentlyPollingInterval(t time.Duration) {
// AsyncAssertion is returned by Eventually and Consistently and polls the actual value passed into Eventually against
// the matcher passed to the Should and ShouldNot methods.
//
// Both Should and ShouldNot take a variadic optionalDescription argument. This is passed on to
// fmt.Sprintf() and is used to annotate failure messages. This allows you to make your failure messages more
// descriptive.
// Both Should and ShouldNot take a variadic optionalDescription argument.
// This argument allows you to make your failure messages more descriptive.
// If a single argument of type `func() string` is passed, this function will be lazily evaluated if a failure occurs
// and the returned string is used to annotate the failure message.
// Otherwise, this argument is passed on to fmt.Sprintf() and then used to annotate the failure message.
//
// Both Should and ShouldNot return a boolean that is true if the assertion passed and false if it failed.
//
// Example:
//
// Eventually(myChannel).Should(Receive(), "Something should have come down the pipe.")
// Consistently(myChannel).ShouldNot(Receive(), "Nothing should have come down the pipe.")
// Consistently(myChannel).ShouldNot(Receive(), func() string { return "Nothing should have come down the pipe." })
type AsyncAssertion interface {
Should(matcher types.GomegaMatcher, optionalDescription ...interface{}) bool
ShouldNot(matcher types.GomegaMatcher, optionalDescription ...interface{}) bool
@ -317,8 +319,11 @@ type GomegaAsyncAssertion = AsyncAssertion
// Typically Should/ShouldNot are used with Ω and To/ToNot/NotTo are used with Expect
// though this is not enforced.
//
// All methods take a variadic optionalDescription argument. This is passed on to fmt.Sprintf()
// and is used to annotate failure messages.
// All methods take a variadic optionalDescription argument.
// This argument allows you to make your failure messages more descriptive.
// If a single argument of type `func() string` is passed, this function will be lazily evaluated if a failure occurs
// and the returned string is used to annotate the failure message.
// Otherwise, this argument is passed on to fmt.Sprintf() and then used to annotate the failure message.
//
// All methods return a bool that is true if the assertion passed and false if it failed.
//

View file

@ -52,16 +52,19 @@ func (assertion *Assertion) buildDescription(optionalDescription ...interface{})
switch len(optionalDescription) {
case 0:
return ""
default:
return fmt.Sprintf(optionalDescription[0].(string), optionalDescription[1:]...) + "\n"
case 1:
if describe, ok := optionalDescription[0].(func() string); ok {
return describe() + "\n"
}
}
return fmt.Sprintf(optionalDescription[0].(string), optionalDescription[1:]...) + "\n"
}
func (assertion *Assertion) match(matcher types.GomegaMatcher, desiredMatch bool, optionalDescription ...interface{}) bool {
matches, err := matcher.Match(assertion.actualInput)
description := assertion.buildDescription(optionalDescription...)
assertion.failWrapper.TWithHelper.Helper()
if err != nil {
description := assertion.buildDescription(optionalDescription...)
assertion.failWrapper.Fail(description+err.Error(), 2+assertion.offset)
return false
}
@ -72,6 +75,7 @@ func (assertion *Assertion) match(matcher types.GomegaMatcher, desiredMatch bool
} else {
message = matcher.NegatedFailureMessage(assertion.actualInput)
}
description := assertion.buildDescription(optionalDescription...)
assertion.failWrapper.Fail(description+message, 2+assertion.offset)
return false
}

View file

@ -60,9 +60,12 @@ func (assertion *AsyncAssertion) buildDescription(optionalDescription ...interfa
switch len(optionalDescription) {
case 0:
return ""
default:
return fmt.Sprintf(optionalDescription[0].(string), optionalDescription[1:]...) + "\n"
case 1:
if describe, ok := optionalDescription[0].(func() string); ok {
return describe() + "\n"
}
}
return fmt.Sprintf(optionalDescription[0].(string), optionalDescription[1:]...) + "\n"
}
func (assertion *AsyncAssertion) actualInputIsAFunction() bool {
@ -103,8 +106,6 @@ func (assertion *AsyncAssertion) match(matcher types.GomegaMatcher, desiredMatch
timer := time.Now()
timeout := time.After(assertion.timeoutInterval)
description := assertion.buildDescription(optionalDescription...)
var matches bool
var err error
mayChange := true
@ -129,6 +130,7 @@ func (assertion *AsyncAssertion) match(matcher types.GomegaMatcher, desiredMatch
}
}
assertion.failWrapper.TWithHelper.Helper()
description := assertion.buildDescription(optionalDescription...)
assertion.failWrapper.Fail(fmt.Sprintf("%s after %.3fs.\n%s%s%s", preamble, time.Since(timer).Seconds(), description, message, errMsg), 3+assertion.offset)
}

View file

@ -5,6 +5,7 @@ import (
"reflect"
"github.com/onsi/gomega/format"
"golang.org/x/xerrors"
)
type MatchErrorMatcher struct {
@ -21,25 +22,28 @@ func (matcher *MatchErrorMatcher) Match(actual interface{}) (success bool, err e
}
actualErr := actual.(error)
expected := matcher.Expected
if isError(matcher.Expected) {
return reflect.DeepEqual(actualErr, matcher.Expected), nil
if isError(expected) {
return reflect.DeepEqual(actualErr, expected) || xerrors.Is(actualErr, expected.(error)), nil
}
if isString(matcher.Expected) {
return actualErr.Error() == matcher.Expected, nil
if isString(expected) {
return actualErr.Error() == expected, nil
}
var subMatcher omegaMatcher
var hasSubMatcher bool
if matcher.Expected != nil {
subMatcher, hasSubMatcher = (matcher.Expected).(omegaMatcher)
if expected != nil {
subMatcher, hasSubMatcher = (expected).(omegaMatcher)
if hasSubMatcher {
return subMatcher.Match(actualErr.Error())
}
}
return false, fmt.Errorf("MatchError must be passed an error, string, or Matcher that can match on strings. Got:\n%s", format.Object(matcher.Expected, 1))
return false, fmt.Errorf(
"MatchError must be passed an error, a string, or a Matcher that can match on strings. Got:\n%s",
format.Object(expected, 1))
}
func (matcher *MatchErrorMatcher) FailureMessage(actual interface{}) (message string) {

View file

@ -7,6 +7,7 @@ package terminal
import (
"bytes"
"io"
"runtime"
"strconv"
"sync"
"unicode/utf8"
@ -939,6 +940,8 @@ func (s *stRingBuffer) NthPreviousEntry(n int) (value string, ok bool) {
// readPasswordLine reads from reader until it finds \n or io.EOF.
// The slice returned does not include the \n.
// readPasswordLine also ignores any \r it finds.
// Windows uses \r as end of line. So, on Windows, readPasswordLine
// reads until it finds \r and ignores any \n it finds during processing.
func readPasswordLine(reader io.Reader) ([]byte, error) {
var buf [1]byte
var ret []byte
@ -947,10 +950,20 @@ func readPasswordLine(reader io.Reader) ([]byte, error) {
n, err := reader.Read(buf[:])
if n > 0 {
switch buf[0] {
case '\b':
if len(ret) > 0 {
ret = ret[:len(ret)-1]
}
case '\n':
if runtime.GOOS != "windows" {
return ret, nil
}
// otherwise ignore \n
case '\r':
// remove \r from passwords on Windows
if runtime.GOOS == "windows" {
return ret, nil
}
// otherwise ignore \r
default:
ret = append(ret, buf[0])
}

View file

@ -85,8 +85,8 @@ func ReadPassword(fd int) ([]byte, error) {
}
old := st
st &^= (windows.ENABLE_ECHO_INPUT)
st |= (windows.ENABLE_PROCESSED_INPUT | windows.ENABLE_LINE_INPUT | windows.ENABLE_PROCESSED_OUTPUT)
st &^= (windows.ENABLE_ECHO_INPUT | windows.ENABLE_LINE_INPUT)
st |= (windows.ENABLE_PROCESSED_OUTPUT | windows.ENABLE_PROCESSED_INPUT)
if err := windows.SetConsoleMode(windows.Handle(fd), st); err != nil {
return nil, err
}

27
vendor/golang.org/x/xerrors/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2019 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/xerrors/PATENTS generated vendored Normal file
View file

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

2
vendor/golang.org/x/xerrors/README generated vendored Normal file
View file

@ -0,0 +1,2 @@
This repository holds the transition packages for the new Go 1.13 error values.
See golang.org/design/29934-error-values.

193
vendor/golang.org/x/xerrors/adaptor.go generated vendored Normal file
View file

@ -0,0 +1,193 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"bytes"
"fmt"
"io"
"reflect"
"strconv"
)
// FormatError calls the FormatError method of f with an errors.Printer
// configured according to s and verb, and writes the result to s.
func FormatError(f Formatter, s fmt.State, verb rune) {
// Assuming this function is only called from the Format method, and given
// that FormatError takes precedence over Format, it cannot be called from
// any package that supports errors.Formatter. It is therefore safe to
// disregard that State may be a specific printer implementation and use one
// of our choice instead.
// limitations: does not support printing error as Go struct.
var (
sep = " " // separator before next error
p = &state{State: s}
direct = true
)
var err error = f
switch verb {
// Note that this switch must match the preference order
// for ordinary string printing (%#v before %+v, and so on).
case 'v':
if s.Flag('#') {
if stringer, ok := err.(fmt.GoStringer); ok {
io.WriteString(&p.buf, stringer.GoString())
goto exit
}
// proceed as if it were %v
} else if s.Flag('+') {
p.printDetail = true
sep = "\n - "
}
case 's':
case 'q', 'x', 'X':
// Use an intermediate buffer in the rare cases that precision,
// truncation, or one of the alternative verbs (q, x, and X) are
// specified.
direct = false
default:
p.buf.WriteString("%!")
p.buf.WriteRune(verb)
p.buf.WriteByte('(')
switch {
case err != nil:
p.buf.WriteString(reflect.TypeOf(f).String())
default:
p.buf.WriteString("<nil>")
}
p.buf.WriteByte(')')
io.Copy(s, &p.buf)
return
}
loop:
for {
switch v := err.(type) {
case Formatter:
err = v.FormatError((*printer)(p))
case fmt.Formatter:
v.Format(p, 'v')
break loop
default:
io.WriteString(&p.buf, v.Error())
break loop
}
if err == nil {
break
}
if p.needColon || !p.printDetail {
p.buf.WriteByte(':')
p.needColon = false
}
p.buf.WriteString(sep)
p.inDetail = false
p.needNewline = false
}
exit:
width, okW := s.Width()
prec, okP := s.Precision()
if !direct || (okW && width > 0) || okP {
// Construct format string from State s.
format := []byte{'%'}
if s.Flag('-') {
format = append(format, '-')
}
if s.Flag('+') {
format = append(format, '+')
}
if s.Flag(' ') {
format = append(format, ' ')
}
if okW {
format = strconv.AppendInt(format, int64(width), 10)
}
if okP {
format = append(format, '.')
format = strconv.AppendInt(format, int64(prec), 10)
}
format = append(format, string(verb)...)
fmt.Fprintf(s, string(format), p.buf.String())
} else {
io.Copy(s, &p.buf)
}
}
var detailSep = []byte("\n ")
// state tracks error printing state. It implements fmt.State.
type state struct {
fmt.State
buf bytes.Buffer
printDetail bool
inDetail bool
needColon bool
needNewline bool
}
func (s *state) Write(b []byte) (n int, err error) {
if s.printDetail {
if len(b) == 0 {
return 0, nil
}
if s.inDetail && s.needColon {
s.needNewline = true
if b[0] == '\n' {
b = b[1:]
}
}
k := 0
for i, c := range b {
if s.needNewline {
if s.inDetail && s.needColon {
s.buf.WriteByte(':')
s.needColon = false
}
s.buf.Write(detailSep)
s.needNewline = false
}
if c == '\n' {
s.buf.Write(b[k:i])
k = i + 1
s.needNewline = true
}
}
s.buf.Write(b[k:])
if !s.inDetail {
s.needColon = true
}
} else if !s.inDetail {
s.buf.Write(b)
}
return len(b), nil
}
// printer wraps a state to implement an xerrors.Printer.
type printer state
func (s *printer) Print(args ...interface{}) {
if !s.inDetail || s.printDetail {
fmt.Fprint((*state)(s), args...)
}
}
func (s *printer) Printf(format string, args ...interface{}) {
if !s.inDetail || s.printDetail {
fmt.Fprintf((*state)(s), format, args...)
}
}
func (s *printer) Detail() bool {
s.inDetail = true
return s.printDetail
}

1
vendor/golang.org/x/xerrors/codereview.cfg generated vendored Normal file
View file

@ -0,0 +1 @@
issuerepo: golang/go

22
vendor/golang.org/x/xerrors/doc.go generated vendored Normal file
View file

@ -0,0 +1,22 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package xerrors implements functions to manipulate errors.
//
// This package is based on the Go 2 proposal for error values:
// https://golang.org/design/29934-error-values
//
// These functions were incorporated into the standard library's errors package
// in Go 1.13:
// - Is
// - As
// - Unwrap
//
// Also, Errorf's %w verb was incorporated into fmt.Errorf.
//
// Use this package to get equivalent behavior in all supported Go versions.
//
// No other features of this package were included in Go 1.13, and at present
// there are no plans to include any of them.
package xerrors // import "golang.org/x/xerrors"

33
vendor/golang.org/x/xerrors/errors.go generated vendored Normal file
View file

@ -0,0 +1,33 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import "fmt"
// errorString is a trivial implementation of error.
type errorString struct {
s string
frame Frame
}
// New returns an error that formats as the given text.
//
// The returned error contains a Frame set to the caller's location and
// implements Formatter to show this information when printed with details.
func New(text string) error {
return &errorString{text, Caller(1)}
}
func (e *errorString) Error() string {
return e.s
}
func (e *errorString) Format(s fmt.State, v rune) { FormatError(e, s, v) }
func (e *errorString) FormatError(p Printer) (next error) {
p.Print(e.s)
e.frame.Format(p)
return nil
}

187
vendor/golang.org/x/xerrors/fmt.go generated vendored Normal file
View file

@ -0,0 +1,187 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"fmt"
"strings"
"unicode"
"unicode/utf8"
"golang.org/x/xerrors/internal"
)
const percentBangString = "%!"
// Errorf formats according to a format specifier and returns the string as a
// value that satisfies error.
//
// The returned error includes the file and line number of the caller when
// formatted with additional detail enabled. If the last argument is an error
// the returned error's Format method will return it if the format string ends
// with ": %s", ": %v", or ": %w". If the last argument is an error and the
// format string ends with ": %w", the returned error implements an Unwrap
// method returning it.
//
// If the format specifier includes a %w verb with an error operand in a
// position other than at the end, the returned error will still implement an
// Unwrap method returning the operand, but the error's Format method will not
// return the wrapped error.
//
// It is invalid to include more than one %w verb or to supply it with an
// operand that does not implement the error interface. The %w verb is otherwise
// a synonym for %v.
func Errorf(format string, a ...interface{}) error {
format = formatPlusW(format)
// Support a ": %[wsv]" suffix, which works well with xerrors.Formatter.
wrap := strings.HasSuffix(format, ": %w")
idx, format2, ok := parsePercentW(format)
percentWElsewhere := !wrap && idx >= 0
if !percentWElsewhere && (wrap || strings.HasSuffix(format, ": %s") || strings.HasSuffix(format, ": %v")) {
err := errorAt(a, len(a)-1)
if err == nil {
return &noWrapError{fmt.Sprintf(format, a...), nil, Caller(1)}
}
// TODO: this is not entirely correct. The error value could be
// printed elsewhere in format if it mixes numbered with unnumbered
// substitutions. With relatively small changes to doPrintf we can
// have it optionally ignore extra arguments and pass the argument
// list in its entirety.
msg := fmt.Sprintf(format[:len(format)-len(": %s")], a[:len(a)-1]...)
frame := Frame{}
if internal.EnableTrace {
frame = Caller(1)
}
if wrap {
return &wrapError{msg, err, frame}
}
return &noWrapError{msg, err, frame}
}
// Support %w anywhere.
// TODO: don't repeat the wrapped error's message when %w occurs in the middle.
msg := fmt.Sprintf(format2, a...)
if idx < 0 {
return &noWrapError{msg, nil, Caller(1)}
}
err := errorAt(a, idx)
if !ok || err == nil {
// Too many %ws or argument of %w is not an error. Approximate the Go
// 1.13 fmt.Errorf message.
return &noWrapError{fmt.Sprintf("%sw(%s)", percentBangString, msg), nil, Caller(1)}
}
frame := Frame{}
if internal.EnableTrace {
frame = Caller(1)
}
return &wrapError{msg, err, frame}
}
func errorAt(args []interface{}, i int) error {
if i < 0 || i >= len(args) {
return nil
}
err, ok := args[i].(error)
if !ok {
return nil
}
return err
}
// formatPlusW is used to avoid the vet check that will barf at %w.
func formatPlusW(s string) string {
return s
}
// Return the index of the only %w in format, or -1 if none.
// Also return a rewritten format string with %w replaced by %v, and
// false if there is more than one %w.
// TODO: handle "%[N]w".
func parsePercentW(format string) (idx int, newFormat string, ok bool) {
// Loosely copied from golang.org/x/tools/go/analysis/passes/printf/printf.go.
idx = -1
ok = true
n := 0
sz := 0
var isW bool
for i := 0; i < len(format); i += sz {
if format[i] != '%' {
sz = 1
continue
}
// "%%" is not a format directive.
if i+1 < len(format) && format[i+1] == '%' {
sz = 2
continue
}
sz, isW = parsePrintfVerb(format[i:])
if isW {
if idx >= 0 {
ok = false
} else {
idx = n
}
// "Replace" the last character, the 'w', with a 'v'.
p := i + sz - 1
format = format[:p] + "v" + format[p+1:]
}
n++
}
return idx, format, ok
}
// Parse the printf verb starting with a % at s[0].
// Return how many bytes it occupies and whether the verb is 'w'.
func parsePrintfVerb(s string) (int, bool) {
// Assume only that the directive is a sequence of non-letters followed by a single letter.
sz := 0
var r rune
for i := 1; i < len(s); i += sz {
r, sz = utf8.DecodeRuneInString(s[i:])
if unicode.IsLetter(r) {
return i + sz, r == 'w'
}
}
return len(s), false
}
type noWrapError struct {
msg string
err error
frame Frame
}
func (e *noWrapError) Error() string {
return fmt.Sprint(e)
}
func (e *noWrapError) Format(s fmt.State, v rune) { FormatError(e, s, v) }
func (e *noWrapError) FormatError(p Printer) (next error) {
p.Print(e.msg)
e.frame.Format(p)
return e.err
}
type wrapError struct {
msg string
err error
frame Frame
}
func (e *wrapError) Error() string {
return fmt.Sprint(e)
}
func (e *wrapError) Format(s fmt.State, v rune) { FormatError(e, s, v) }
func (e *wrapError) FormatError(p Printer) (next error) {
p.Print(e.msg)
e.frame.Format(p)
return e.err
}
func (e *wrapError) Unwrap() error {
return e.err
}

34
vendor/golang.org/x/xerrors/format.go generated vendored Normal file
View file

@ -0,0 +1,34 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
// A Formatter formats error messages.
type Formatter interface {
error
// FormatError prints the receiver's first error and returns the next error in
// the error chain, if any.
FormatError(p Printer) (next error)
}
// A Printer formats error messages.
//
// The most common implementation of Printer is the one provided by package fmt
// during Printf (as of Go 1.13). Localization packages such as golang.org/x/text/message
// typically provide their own implementations.
type Printer interface {
// Print appends args to the message output.
Print(args ...interface{})
// Printf writes a formatted string.
Printf(format string, args ...interface{})
// Detail reports whether error detail is requested.
// After the first call to Detail, all text written to the Printer
// is formatted as additional detail, or ignored when
// detail has not been requested.
// If Detail returns false, the caller can avoid printing the detail at all.
Detail() bool
}

56
vendor/golang.org/x/xerrors/frame.go generated vendored Normal file
View file

@ -0,0 +1,56 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"runtime"
)
// A Frame contains part of a call stack.
type Frame struct {
// Make room for three PCs: the one we were asked for, what it called,
// and possibly a PC for skipPleaseUseCallersFrames. See:
// https://go.googlesource.com/go/+/032678e0fb/src/runtime/extern.go#169
frames [3]uintptr
}
// Caller returns a Frame that describes a frame on the caller's stack.
// The argument skip is the number of frames to skip over.
// Caller(0) returns the frame for the caller of Caller.
func Caller(skip int) Frame {
var s Frame
runtime.Callers(skip+1, s.frames[:])
return s
}
// location reports the file, line, and function of a frame.
//
// The returned function may be "" even if file and line are not.
func (f Frame) location() (function, file string, line int) {
frames := runtime.CallersFrames(f.frames[:])
if _, ok := frames.Next(); !ok {
return "", "", 0
}
fr, ok := frames.Next()
if !ok {
return "", "", 0
}
return fr.Function, fr.File, fr.Line
}
// Format prints the stack as error detail.
// It should be called from an error's Format implementation
// after printing any other error detail.
func (f Frame) Format(p Printer) {
if p.Detail() {
function, file, line := f.location()
if function != "" {
p.Printf("%s\n ", function)
}
if file != "" {
p.Printf("%s:%d\n", file, line)
}
}
}

3
vendor/golang.org/x/xerrors/go.mod generated vendored Normal file
View file

@ -0,0 +1,3 @@
module golang.org/x/xerrors
go 1.11

8
vendor/golang.org/x/xerrors/internal/internal.go generated vendored Normal file
View file

@ -0,0 +1,8 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package internal
// EnableTrace indicates whether stack information should be recorded in errors.
var EnableTrace = true

106
vendor/golang.org/x/xerrors/wrap.go generated vendored Normal file
View file

@ -0,0 +1,106 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"reflect"
)
// A Wrapper provides context around another error.
type Wrapper interface {
// Unwrap returns the next error in the error chain.
// If there is no next error, Unwrap returns nil.
Unwrap() error
}
// Opaque returns an error with the same error formatting as err
// but that does not match err and cannot be unwrapped.
func Opaque(err error) error {
return noWrapper{err}
}
type noWrapper struct {
error
}
func (e noWrapper) FormatError(p Printer) (next error) {
if f, ok := e.error.(Formatter); ok {
return f.FormatError(p)
}
p.Print(e.error)
return nil
}
// Unwrap returns the result of calling the Unwrap method on err, if err implements
// Unwrap. Otherwise, Unwrap returns nil.
func Unwrap(err error) error {
u, ok := err.(Wrapper)
if !ok {
return nil
}
return u.Unwrap()
}
// Is reports whether any error in err's chain matches target.
//
// An error is considered to match a target if it is equal to that target or if
// it implements a method Is(error) bool such that Is(target) returns true.
func Is(err, target error) bool {
if target == nil {
return err == target
}
isComparable := reflect.TypeOf(target).Comparable()
for {
if isComparable && err == target {
return true
}
if x, ok := err.(interface{ Is(error) bool }); ok && x.Is(target) {
return true
}
// TODO: consider supporing target.Is(err). This would allow
// user-definable predicates, but also may allow for coping with sloppy
// APIs, thereby making it easier to get away with them.
if err = Unwrap(err); err == nil {
return false
}
}
}
// As finds the first error in err's chain that matches the type to which target
// points, and if so, sets the target to its value and returns true. An error
// matches a type if it is assignable to the target type, or if it has a method
// As(interface{}) bool such that As(target) returns true. As will panic if target
// is not a non-nil pointer to a type which implements error or is of interface type.
//
// The As method should set the target to its value and return true if err
// matches the type to which target points.
func As(err error, target interface{}) bool {
if target == nil {
panic("errors: target cannot be nil")
}
val := reflect.ValueOf(target)
typ := val.Type()
if typ.Kind() != reflect.Ptr || val.IsNil() {
panic("errors: target must be a non-nil pointer")
}
if e := typ.Elem(); e.Kind() != reflect.Interface && !e.Implements(errorType) {
panic("errors: *target must be interface or implement error")
}
targetType := typ.Elem()
for err != nil {
if reflect.TypeOf(err).AssignableTo(targetType) {
val.Elem().Set(reflect.ValueOf(err))
return true
}
if x, ok := err.(interface{ As(interface{}) bool }); ok && x.As(target) {
return true
}
err = Unwrap(err)
}
return false
}
var errorType = reflect.TypeOf((*error)(nil)).Elem()

89
vendor/gonum.org/v1/gonum/AUTHORS generated vendored
View file

@ -1,89 +0,0 @@
# This is the official list of gonum authors for copyright purposes.
# This file is distinct from the CONTRIBUTORS files.
# See the latter for an explanation.
# Names should be added to this file as
# Name or Organization <email address>
# The email address is not required for organizations.
# Please keep the list sorted.
Alexander Egurnov <alexander.egurnov@gmail.com>
Bill Gray <wgray@gogray.com>
Bill Noon <noon.bill@gmail.com>
Brendan Tracey <tracey.brendan@gmail.com>
Brent Pedersen <bpederse@gmail.com>
Chad Kunde <kunde21@gmail.com>
Chih-Wei Chang <bert.cwchang@gmail.com>
Chris Tessum <ctessum@gmail.com>
Christophe Meessen <christophe.meessen@gmail.com>
Clayton Northey <clayton.northey@gmail.com>
Dan Kortschak <dan.kortschak@adelaide.edu.au> <dan@kortschak.io>
Daniel Fireman <danielfireman@gmail.com>
David Samborski <bloggingarrow@gmail.com>
Davor Kapsa <davor.kapsa@gmail.com>
DeepMind Technologies
Dezmond Goff <goff.dezmond@gmail.com>
Egon Elbre <egonelbre@gmail.com>
Ekaterina Efimova <katerina.efimova@gmail.com>
Ethan Burns <burns.ethan@gmail.com>
Evert Lammerts <evert.lammerts@gmail.com>
Facundo Gaich <facugaich@gmail.com>
Fazlul Shahriar <fshahriar@gmail.com>
Francesc Campoy <campoy@golang.org>
Google Inc
Gustaf Johansson <gustaf@pinon.se>
Iakov Davydov <iakov.davydov@unil.ch>
Igor Mikushkin <igor.mikushkin@gmail.com>
Iskander Sharipov <quasilyte@gmail.com>
Jalem Raj Rohit <jrajrohit33@gmail.com>
James Bell <james@stellentus.com>
James Bowman <james.edward.bowman@gmail.com>
James Holmes <32bitkid@gmail.com>
Janne Snabb <snabb@epipe.com>
Jeff Juozapaitis <jjjuozap@email.arizona.edu>
Jeremy Atkinson <jchatkinson@gmail.com>
Jonas Kahler <jonas@derkahler.de>
Jonas Schulze <jonas.schulze@ovgu.de>
Jonathan J Lawlor <jonathan.lawlor@gmail.com>
Jonathan Schroeder <jd.schroeder@gmail.com>
Joseph Watson <jtwatson@linux-consulting.us>
Josh Wilson <josh.craig.wilson@gmail.com>
Julien Roland <juroland@gmail.com>
Kai Trukenmüller <ktye78@gmail.com>
Kent English <kent.english@gmail.com>
Kevin C. Zimmerman <kevinczimmerman@gmail.com>
Kirill Motkov <motkov.kirill@gmail.com>
Konstantin Shaposhnikov <k.shaposhnikov@gmail.com>
Leonid Kneller <recondite.matter@gmail.com>
Lyron Winderbaum <lyron.winderbaum@student.adelaide.edu.au>
Martin Diz <github@martindiz.com.ar>
Matthieu Di Mercurio <matthieu.dimercurio@gmail.com>
Max Halford <maxhalford25@gmail.com>
MinJae Kwon <k239507@gmail.com>
Nick Potts <nick@the-potts.com>
Olivier Wulveryck <olivier.wulveryck@gmail.com>
Or Rikon <rikonor@gmail.com>
Pontus Melke <pontusmelke@gmail.com>
Renée French
Rishi Desai <desai.rishi1@gmail.com>
Robin Eklind <r.eklind.87@gmail.com>
Sam Zaydel <szaydel@gmail.com>
Samuel Kelemen <Samuel@Kelemen.us>
Saran Ahluwalia <ahlusar.ahluwalia@gmail.com>
Scott Holden <scott@sshconnection.com>
Sebastien Binet <seb.binet@gmail.com>
Shawn Smith <shawnpsmith@gmail.com>
source{d} <hello@sourced.tech>
Spencer Lyon <spencerlyon2@gmail.com>
Steve McCoy <mccoyst@gmail.com>
Taesu Pyo <pyotaesu@gmail.com>
Takeshi Yoneda <cz.rk.t0415y.g@gmail.com>
The University of Adelaide
The University of Minnesota
The University of Washington
Thomas Berg <tomfuture@gmail.com>
Tobin Harding <me@tobin.cc>
Vincent Thiery <vjmthiery@gmail.com>
Vladimír Chalupecký <vladimir.chalupecky@gmail.com>
Yevgeniy Vahlis <evahlis@gmail.com>

View file

@ -1,91 +0,0 @@
# This is the official list of people who can contribute
# (and typically have contributed) code to the gonum
# repository.
#
# The AUTHORS file lists the copyright holders; this file
# lists people. For example, Google employees would be listed here
# but not in AUTHORS, because Google would hold the copyright.
#
# When adding J Random Contributor's name to this file,
# either J's name or J's organization's name should be
# added to the AUTHORS file.
#
# Names should be added to this file like so:
# Name <email address>
#
# Please keep the list sorted.
Alexander Egurnov <alexander.egurnov@gmail.com>
Andrew Brampton <brampton@gmail.com>
Bill Gray <wgray@gogray.com>
Bill Noon <noon.bill@gmail.com>
Brendan Tracey <tracey.brendan@gmail.com>
Brent Pedersen <bpederse@gmail.com>
Chad Kunde <kunde21@gmail.com>
Chih-Wei Chang <bert.cwchang@gmail.com>
Chris Tessum <ctessum@gmail.com>
Christophe Meessen <christophe.meessen@gmail.com>
Clayton Northey <clayton.northey@gmail.com>
Dan Kortschak <dan.kortschak@adelaide.edu.au> <dan@kortschak.io>
Daniel Fireman <danielfireman@gmail.com>
David Samborski <bloggingarrow@gmail.com>
Davor Kapsa <davor.kapsa@gmail.com>
Dezmond Goff <goff.dezmond@gmail.com>
Egon Elbre <egonelbre@gmail.com>
Ekaterina Efimova <katerina.efimova@gmail.com>
Ethan Burns <burns.ethan@gmail.com>
Evert Lammerts <evert.lammerts@gmail.com>
Facundo Gaich <facugaich@gmail.com>
Fazlul Shahriar <fshahriar@gmail.com>
Francesc Campoy <campoy@golang.org>
Gustaf Johansson <gustaf@pinon.se>
Iakov Davydov <iakov.davydov@unil.ch>
Igor Mikushkin <igor.mikushkin@gmail.com>
Iskander Sharipov <quasilyte@gmail.com>
Jalem Raj Rohit <jrajrohit33@gmail.com>
James Bell <james@stellentus.com>
James Bowman <james.edward.bowman@gmail.com>
James Holmes <32bitkid@gmail.com>
Janne Snabb <snabb@epipe.com>
Jeff Juozapaitis <jjjuozap@email.arizona.edu>
Jeremy Atkinson <jchatkinson@gmail.com>
Jonas Kahler <jonas@derkahler.de>
Jonas Schulze <jonas.schulze@ovgu.de>
Jonathan J Lawlor <jonathan.lawlor@gmail.com>
Jonathan Schroeder <jd.schroeder@gmail.com>
Joseph Watson <jtwatson@linux-consulting.us>
Josh Wilson <josh.craig.wilson@gmail.com>
Julien Roland <juroland@gmail.com>
Kai Trukenmüller <ktye78@gmail.com>
Kent English <kent.english@gmail.com>
Kevin C. Zimmerman <kevinczimmerman@gmail.com>
Kirill Motkov <motkov.kirill@gmail.com>
Konstantin Shaposhnikov <k.shaposhnikov@gmail.com>
Leonid Kneller <recondite.matter@gmail.com>
Lyron Winderbaum <lyron.winderbaum@student.adelaide.edu.au>
Martin Diz <github@martindiz.com.ar>
Matthieu Di Mercurio <matthieu.dimercurio@gmail.com>
Max Halford <maxhalford25@gmail.com>
MinJae Kwon <k239507@gmail.com>
Nick Potts <nick@the-potts.com>
Olivier Wulveryck <olivier.wulveryck@gmail.com>
Or Rikon <rikonor@gmail.com>
Pontus Melke <pontusmelke@gmail.com>
Renée French
Rishi Desai <desai.rishi1@gmail.com>
Robin Eklind <r.eklind.87@gmail.com>
Sam Zaydel <szaydel@gmail.com>
Samuel Kelemen <Samuel@Kelemen.us>
Saran Ahluwalia <ahlusar.ahluwalia@gmail.com>
Scott Holden <scott@sshconnection.com>
Sebastien Binet <seb.binet@gmail.com>
Shawn Smith <shawnpsmith@gmail.com>
Spencer Lyon <spencerlyon2@gmail.com>
Steve McCoy <mccoyst@gmail.com>
Taesu Pyo <pyotaesu@gmail.com>
Takeshi Yoneda <cz.rk.t0415y.g@gmail.com>
Thomas Berg <tomfuture@gmail.com>
Tobin Harding <me@tobin.cc>
Vincent Thiery <vjmthiery@gmail.com>
Vladimír Chalupecký <vladimir.chalupecky@gmail.com>
Yevgeniy Vahlis <evahlis@gmail.com>

23
vendor/gonum.org/v1/gonum/LICENSE generated vendored
View file

@ -1,23 +0,0 @@
Copyright ©2013 The Gonum Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the gonum project nor the names of its authors and
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -1,47 +0,0 @@
# Gonum BLAS [![GoDoc](https://godoc.org/gonum.org/v1/gonum/blas?status.svg)](https://godoc.org/gonum.org/v1/gonum/blas)
A collection of packages to provide BLAS functionality for the [Go programming
language](http://golang.org)
## Installation
```sh
go get gonum.org/v1/gonum/blas/...
```
## Packages
### blas
Defines [BLAS API](http://www.netlib.org/blas/blast-forum/cinterface.pdf) split in several
interfaces.
### blas/gonum
Go implementation of the BLAS API (incomplete, implements the `float32` and `float64` API).
### blas/blas64 and blas/blas32
Wrappers for an implementation of the double (i.e., `float64`) and single (`float32`)
precision real parts of the BLAS API.
```Go
package main
import (
"fmt"
"gonum.org/v1/gonum/blas/blas64"
)
func main() {
v := blas64.Vector{Inc: 1, Data: []float64{1, 1, 1}}
fmt.Println("v has length:", blas64.Nrm2(len(v.Data), v))
}
```
### blas/cblas128 and blas/cblas64
Wrappers for an implementation of the double (i.e., `complex128`) and single (`complex64`)
precision complex parts of the blas API.
Currently blas/cblas64 and blas/cblas128 require gonum.org/v1/netlib/blas.

View file

@ -1,283 +0,0 @@
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate ./conversions.bash
package blas
// Flag constants indicate Givens transformation H matrix state.
type Flag int
const (
Identity Flag = -2 // H is the identity matrix; no rotation is needed.
Rescaling Flag = -1 // H specifies rescaling.
OffDiagonal Flag = 0 // Off-diagonal elements of H are non-unit.
Diagonal Flag = 1 // Diagonal elements of H are non-unit.
)
// SrotmParams contains Givens transformation parameters returned
// by the Float32 Srotm method.
type SrotmParams struct {
Flag
H [4]float32 // Column-major 2 by 2 matrix.
}
// DrotmParams contains Givens transformation parameters returned
// by the Float64 Drotm method.
type DrotmParams struct {
Flag
H [4]float64 // Column-major 2 by 2 matrix.
}
// Transpose specifies the transposition operation of a matrix.
type Transpose byte
const (
NoTrans Transpose = 'N'
Trans Transpose = 'T'
ConjTrans Transpose = 'C'
)
// Uplo specifies whether a matrix is upper or lower triangular.
type Uplo byte
const (
Upper Uplo = 'U'
Lower Uplo = 'L'
All Uplo = 'A'
)
// Diag specifies whether a matrix is unit triangular.
type Diag byte
const (
NonUnit Diag = 'N'
Unit Diag = 'U'
)
// Side specifies from which side a multiplication operation is performed.
type Side byte
const (
Left Side = 'L'
Right Side = 'R'
)
// Float32 implements the single precision real BLAS routines.
type Float32 interface {
Float32Level1
Float32Level2
Float32Level3
}
// Float32Level1 implements the single precision real BLAS Level 1 routines.
type Float32Level1 interface {
Sdsdot(n int, alpha float32, x []float32, incX int, y []float32, incY int) float32
Dsdot(n int, x []float32, incX int, y []float32, incY int) float64
Sdot(n int, x []float32, incX int, y []float32, incY int) float32
Snrm2(n int, x []float32, incX int) float32
Sasum(n int, x []float32, incX int) float32
Isamax(n int, x []float32, incX int) int
Sswap(n int, x []float32, incX int, y []float32, incY int)
Scopy(n int, x []float32, incX int, y []float32, incY int)
Saxpy(n int, alpha float32, x []float32, incX int, y []float32, incY int)
Srotg(a, b float32) (c, s, r, z float32)
Srotmg(d1, d2, b1, b2 float32) (p SrotmParams, rd1, rd2, rb1 float32)
Srot(n int, x []float32, incX int, y []float32, incY int, c, s float32)
Srotm(n int, x []float32, incX int, y []float32, incY int, p SrotmParams)
Sscal(n int, alpha float32, x []float32, incX int)
}
// Float32Level2 implements the single precision real BLAS Level 2 routines.
type Float32Level2 interface {
Sgemv(tA Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Sgbmv(tA Transpose, m, n, kL, kU int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Strmv(ul Uplo, tA Transpose, d Diag, n int, a []float32, lda int, x []float32, incX int)
Stbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []float32, lda int, x []float32, incX int)
Stpmv(ul Uplo, tA Transpose, d Diag, n int, ap []float32, x []float32, incX int)
Strsv(ul Uplo, tA Transpose, d Diag, n int, a []float32, lda int, x []float32, incX int)
Stbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []float32, lda int, x []float32, incX int)
Stpsv(ul Uplo, tA Transpose, d Diag, n int, ap []float32, x []float32, incX int)
Ssymv(ul Uplo, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Ssbmv(ul Uplo, n, k int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Sspmv(ul Uplo, n int, alpha float32, ap []float32, x []float32, incX int, beta float32, y []float32, incY int)
Sger(m, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int)
Ssyr(ul Uplo, n int, alpha float32, x []float32, incX int, a []float32, lda int)
Sspr(ul Uplo, n int, alpha float32, x []float32, incX int, ap []float32)
Ssyr2(ul Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int)
Sspr2(ul Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32)
}
// Float32Level3 implements the single precision real BLAS Level 3 routines.
type Float32Level3 interface {
Sgemm(tA, tB Transpose, m, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
Ssymm(s Side, ul Uplo, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
Ssyrk(ul Uplo, t Transpose, n, k int, alpha float32, a []float32, lda int, beta float32, c []float32, ldc int)
Ssyr2k(ul Uplo, t Transpose, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
Strmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int)
Strsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int)
}
// Float64 implements the single precision real BLAS routines.
type Float64 interface {
Float64Level1
Float64Level2
Float64Level3
}
// Float64Level1 implements the double precision real BLAS Level 1 routines.
type Float64Level1 interface {
Ddot(n int, x []float64, incX int, y []float64, incY int) float64
Dnrm2(n int, x []float64, incX int) float64
Dasum(n int, x []float64, incX int) float64
Idamax(n int, x []float64, incX int) int
Dswap(n int, x []float64, incX int, y []float64, incY int)
Dcopy(n int, x []float64, incX int, y []float64, incY int)
Daxpy(n int, alpha float64, x []float64, incX int, y []float64, incY int)
Drotg(a, b float64) (c, s, r, z float64)
Drotmg(d1, d2, b1, b2 float64) (p DrotmParams, rd1, rd2, rb1 float64)
Drot(n int, x []float64, incX int, y []float64, incY int, c float64, s float64)
Drotm(n int, x []float64, incX int, y []float64, incY int, p DrotmParams)
Dscal(n int, alpha float64, x []float64, incX int)
}
// Float64Level2 implements the double precision real BLAS Level 2 routines.
type Float64Level2 interface {
Dgemv(tA Transpose, m, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dgbmv(tA Transpose, m, n, kL, kU int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dtrmv(ul Uplo, tA Transpose, d Diag, n int, a []float64, lda int, x []float64, incX int)
Dtbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []float64, lda int, x []float64, incX int)
Dtpmv(ul Uplo, tA Transpose, d Diag, n int, ap []float64, x []float64, incX int)
Dtrsv(ul Uplo, tA Transpose, d Diag, n int, a []float64, lda int, x []float64, incX int)
Dtbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []float64, lda int, x []float64, incX int)
Dtpsv(ul Uplo, tA Transpose, d Diag, n int, ap []float64, x []float64, incX int)
Dsymv(ul Uplo, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dsbmv(ul Uplo, n, k int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dspmv(ul Uplo, n int, alpha float64, ap []float64, x []float64, incX int, beta float64, y []float64, incY int)
Dger(m, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64, lda int)
Dsyr(ul Uplo, n int, alpha float64, x []float64, incX int, a []float64, lda int)
Dspr(ul Uplo, n int, alpha float64, x []float64, incX int, ap []float64)
Dsyr2(ul Uplo, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64, lda int)
Dspr2(ul Uplo, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64)
}
// Float64Level3 implements the double precision real BLAS Level 3 routines.
type Float64Level3 interface {
Dgemm(tA, tB Transpose, m, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
Dsymm(s Side, ul Uplo, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
Dsyrk(ul Uplo, t Transpose, n, k int, alpha float64, a []float64, lda int, beta float64, c []float64, ldc int)
Dsyr2k(ul Uplo, t Transpose, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
Dtrmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int)
Dtrsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int)
}
// Complex64 implements the single precision complex BLAS routines.
type Complex64 interface {
Complex64Level1
Complex64Level2
Complex64Level3
}
// Complex64Level1 implements the single precision complex BLAS Level 1 routines.
type Complex64Level1 interface {
Cdotu(n int, x []complex64, incX int, y []complex64, incY int) (dotu complex64)
Cdotc(n int, x []complex64, incX int, y []complex64, incY int) (dotc complex64)
Scnrm2(n int, x []complex64, incX int) float32
Scasum(n int, x []complex64, incX int) float32
Icamax(n int, x []complex64, incX int) int
Cswap(n int, x []complex64, incX int, y []complex64, incY int)
Ccopy(n int, x []complex64, incX int, y []complex64, incY int)
Caxpy(n int, alpha complex64, x []complex64, incX int, y []complex64, incY int)
Cscal(n int, alpha complex64, x []complex64, incX int)
Csscal(n int, alpha float32, x []complex64, incX int)
}
// Complex64Level2 implements the single precision complex BLAS routines Level 2 routines.
type Complex64Level2 interface {
Cgemv(tA Transpose, m, n int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
Cgbmv(tA Transpose, m, n, kL, kU int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
Ctrmv(ul Uplo, tA Transpose, d Diag, n int, a []complex64, lda int, x []complex64, incX int)
Ctbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex64, lda int, x []complex64, incX int)
Ctpmv(ul Uplo, tA Transpose, d Diag, n int, ap []complex64, x []complex64, incX int)
Ctrsv(ul Uplo, tA Transpose, d Diag, n int, a []complex64, lda int, x []complex64, incX int)
Ctbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex64, lda int, x []complex64, incX int)
Ctpsv(ul Uplo, tA Transpose, d Diag, n int, ap []complex64, x []complex64, incX int)
Chemv(ul Uplo, n int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
Chbmv(ul Uplo, n, k int, alpha complex64, a []complex64, lda int, x []complex64, incX int, beta complex64, y []complex64, incY int)
Chpmv(ul Uplo, n int, alpha complex64, ap []complex64, x []complex64, incX int, beta complex64, y []complex64, incY int)
Cgeru(m, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, a []complex64, lda int)
Cgerc(m, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, a []complex64, lda int)
Cher(ul Uplo, n int, alpha float32, x []complex64, incX int, a []complex64, lda int)
Chpr(ul Uplo, n int, alpha float32, x []complex64, incX int, a []complex64)
Cher2(ul Uplo, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, a []complex64, lda int)
Chpr2(ul Uplo, n int, alpha complex64, x []complex64, incX int, y []complex64, incY int, ap []complex64)
}
// Complex64Level3 implements the single precision complex BLAS Level 3 routines.
type Complex64Level3 interface {
Cgemm(tA, tB Transpose, m, n, k int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
Csymm(s Side, ul Uplo, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
Csyrk(ul Uplo, t Transpose, n, k int, alpha complex64, a []complex64, lda int, beta complex64, c []complex64, ldc int)
Csyr2k(ul Uplo, t Transpose, n, k int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
Ctrmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int)
Ctrsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int)
Chemm(s Side, ul Uplo, m, n int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta complex64, c []complex64, ldc int)
Cherk(ul Uplo, t Transpose, n, k int, alpha float32, a []complex64, lda int, beta float32, c []complex64, ldc int)
Cher2k(ul Uplo, t Transpose, n, k int, alpha complex64, a []complex64, lda int, b []complex64, ldb int, beta float32, c []complex64, ldc int)
}
// Complex128 implements the double precision complex BLAS routines.
type Complex128 interface {
Complex128Level1
Complex128Level2
Complex128Level3
}
// Complex128Level1 implements the double precision complex BLAS Level 1 routines.
type Complex128Level1 interface {
Zdotu(n int, x []complex128, incX int, y []complex128, incY int) (dotu complex128)
Zdotc(n int, x []complex128, incX int, y []complex128, incY int) (dotc complex128)
Dznrm2(n int, x []complex128, incX int) float64
Dzasum(n int, x []complex128, incX int) float64
Izamax(n int, x []complex128, incX int) int
Zswap(n int, x []complex128, incX int, y []complex128, incY int)
Zcopy(n int, x []complex128, incX int, y []complex128, incY int)
Zaxpy(n int, alpha complex128, x []complex128, incX int, y []complex128, incY int)
Zscal(n int, alpha complex128, x []complex128, incX int)
Zdscal(n int, alpha float64, x []complex128, incX int)
}
// Complex128Level2 implements the double precision complex BLAS Level 2 routines.
type Complex128Level2 interface {
Zgemv(tA Transpose, m, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
Zgbmv(tA Transpose, m, n int, kL int, kU int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
Ztrmv(ul Uplo, tA Transpose, d Diag, n int, a []complex128, lda int, x []complex128, incX int)
Ztbmv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex128, lda int, x []complex128, incX int)
Ztpmv(ul Uplo, tA Transpose, d Diag, n int, ap []complex128, x []complex128, incX int)
Ztrsv(ul Uplo, tA Transpose, d Diag, n int, a []complex128, lda int, x []complex128, incX int)
Ztbsv(ul Uplo, tA Transpose, d Diag, n, k int, a []complex128, lda int, x []complex128, incX int)
Ztpsv(ul Uplo, tA Transpose, d Diag, n int, ap []complex128, x []complex128, incX int)
Zhemv(ul Uplo, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
Zhbmv(ul Uplo, n, k int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int)
Zhpmv(ul Uplo, n int, alpha complex128, ap []complex128, x []complex128, incX int, beta complex128, y []complex128, incY int)
Zgeru(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int)
Zgerc(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int)
Zher(ul Uplo, n int, alpha float64, x []complex128, incX int, a []complex128, lda int)
Zhpr(ul Uplo, n int, alpha float64, x []complex128, incX int, a []complex128)
Zher2(ul Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int)
Zhpr2(ul Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, ap []complex128)
}
// Complex128Level3 implements the double precision complex BLAS Level 3 routines.
type Complex128Level3 interface {
Zgemm(tA, tB Transpose, m, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
Zsymm(s Side, ul Uplo, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
Zsyrk(ul Uplo, t Transpose, n, k int, alpha complex128, a []complex128, lda int, beta complex128, c []complex128, ldc int)
Zsyr2k(ul Uplo, t Transpose, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
Ztrmm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int)
Ztrsm(s Side, ul Uplo, tA Transpose, d Diag, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int)
Zhemm(s Side, ul Uplo, m, n int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int)
Zherk(ul Uplo, t Transpose, n, k int, alpha float64, a []complex128, lda int, beta float64, c []complex128, ldc int)
Zher2k(ul Uplo, t Transpose, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta float64, c []complex128, ldc int)
}

View file

@ -1,469 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blas64
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/gonum"
)
var blas64 blas.Float64 = gonum.Implementation{}
// Use sets the BLAS float64 implementation to be used by subsequent BLAS calls.
// The default implementation is
// gonum.org/v1/gonum/blas/gonum.Implementation.
func Use(b blas.Float64) {
blas64 = b
}
// Implementation returns the current BLAS float64 implementation.
//
// Implementation allows direct calls to the current the BLAS float64 implementation
// giving finer control of parameters.
func Implementation() blas.Float64 {
return blas64
}
// Vector represents a vector with an associated element increment.
type Vector struct {
N int
Data []float64
Inc int
}
// General represents a matrix using the conventional storage scheme.
type General struct {
Rows, Cols int
Data []float64
Stride int
}
// Band represents a band matrix using the band storage scheme.
type Band struct {
Rows, Cols int
KL, KU int
Data []float64
Stride int
}
// Triangular represents a triangular matrix using the conventional storage scheme.
type Triangular struct {
Uplo blas.Uplo
Diag blas.Diag
N int
Data []float64
Stride int
}
// TriangularBand represents a triangular matrix using the band storage scheme.
type TriangularBand struct {
Uplo blas.Uplo
Diag blas.Diag
N, K int
Data []float64
Stride int
}
// TriangularPacked represents a triangular matrix using the packed storage scheme.
type TriangularPacked struct {
Uplo blas.Uplo
Diag blas.Diag
N int
Data []float64
}
// Symmetric represents a symmetric matrix using the conventional storage scheme.
type Symmetric struct {
Uplo blas.Uplo
N int
Data []float64
Stride int
}
// SymmetricBand represents a symmetric matrix using the band storage scheme.
type SymmetricBand struct {
Uplo blas.Uplo
N, K int
Data []float64
Stride int
}
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
type SymmetricPacked struct {
Uplo blas.Uplo
N int
Data []float64
}
// Level 1
const (
negInc = "blas64: negative vector increment"
badLength = "blas64: vector length mismatch"
)
// Dot computes the dot product of the two vectors:
// \sum_i x[i]*y[i].
func Dot(x, y Vector) float64 {
if x.N != y.N {
panic(badLength)
}
return blas64.Ddot(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Nrm2 computes the Euclidean norm of the vector x:
// sqrt(\sum_i x[i]*x[i]).
//
// Nrm2 will panic if the vector increment is negative.
func Nrm2(x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Dnrm2(x.N, x.Data, x.Inc)
}
// Asum computes the sum of the absolute values of the elements of x:
// \sum_i |x[i]|.
//
// Asum will panic if the vector increment is negative.
func Asum(x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Dasum(x.N, x.Data, x.Inc)
}
// Iamax returns the index of an element of x with the largest absolute value.
// If there are multiple such indices the earliest is returned.
// Iamax returns -1 if n == 0.
//
// Iamax will panic if the vector increment is negative.
func Iamax(x Vector) int {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Idamax(x.N, x.Data, x.Inc)
}
// Swap exchanges the elements of the two vectors:
// x[i], y[i] = y[i], x[i] for all i.
func Swap(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Dswap(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Copy copies the elements of x into the elements of y:
// y[i] = x[i] for all i.
// Copy requires that the lengths of x and y match and will panic otherwise.
func Copy(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Dcopy(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Axpy adds x scaled by alpha to y:
// y[i] += alpha*x[i] for all i.
func Axpy(alpha float64, x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Daxpy(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
}
// Rotg computes the parameters of a Givens plane rotation so that
// ⎡ c s⎤ ⎡a⎤ ⎡r⎤
// ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦
// where a and b are the Cartesian coordinates of a given point.
// c, s, and r are defined as
// r = ±Sqrt(a^2 + b^2),
// c = a/r, the cosine of the rotation angle,
// s = a/r, the sine of the rotation angle,
// and z is defined such that
// if |a| > |b|, z = s,
// otherwise if c != 0, z = 1/c,
// otherwise z = 1.
func Rotg(a, b float64) (c, s, r, z float64) {
return blas64.Drotg(a, b)
}
// Rotmg computes the modified Givens rotation. See
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
// for more details.
func Rotmg(d1, d2, b1, b2 float64) (p blas.DrotmParams, rd1, rd2, rb1 float64) {
return blas64.Drotmg(d1, d2, b1, b2)
}
// Rot applies a plane transformation to n points represented by the vectors x
// and y:
// x[i] = c*x[i] + s*y[i],
// y[i] = -s*x[i] + c*y[i], for all i.
func Rot(x, y Vector, c, s float64) {
if x.N != y.N {
panic(badLength)
}
blas64.Drot(x.N, x.Data, x.Inc, y.Data, y.Inc, c, s)
}
// Rotm applies the modified Givens rotation to n points represented by the
// vectors x and y.
func Rotm(x, y Vector, p blas.DrotmParams) {
if x.N != y.N {
panic(badLength)
}
blas64.Drotm(x.N, x.Data, x.Inc, y.Data, y.Inc, p)
}
// Scal scales the vector x by alpha:
// x[i] *= alpha for all i.
//
// Scal will panic if the vector increment is negative.
func Scal(alpha float64, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
blas64.Dscal(x.N, alpha, x.Data, x.Inc)
}
// Level 2
// Gemv computes
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
// y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func Gemv(t blas.Transpose, alpha float64, a General, x Vector, beta float64, y Vector) {
blas64.Dgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Gbmv computes
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
// y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars.
func Gbmv(t blas.Transpose, alpha float64, a Band, x Vector, beta float64, y Vector) {
blas64.Dgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Trmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix, and x is a vector.
func Trmv(t blas.Transpose, a Triangular, x Vector) {
blas64.Dtrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular band matrix, and x is a vector.
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
blas64.Dtbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix in packed format, and x is a vector.
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
blas64.Dtpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Trsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Trsv(t blas.Transpose, a Triangular, x Vector) {
blas64.Dtrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular band matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
blas64.Dtbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans or blas.ConjTrans,
// where A is an n×n triangular matrix in packed format, and x and b are
// vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
blas64.Dtpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Symv computes
// y = alpha * A * x + beta * y,
// where A is an n×n symmetric matrix, x and y are vectors, and alpha and
// beta are scalars.
func Symv(alpha float64, a Symmetric, x Vector, beta float64, y Vector) {
blas64.Dsymv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Sbmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n symmetric band matrix, x and y are vectors, and alpha
// and beta are scalars.
func Sbmv(alpha float64, a SymmetricBand, x Vector, beta float64, y Vector) {
blas64.Dsbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Spmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha and beta are scalars.
func Spmv(alpha float64, a SymmetricPacked, x Vector, beta float64, y Vector) {
blas64.Dspmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Ger performs a rank-1 update
// A += alpha * x * y^T,
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Ger(alpha float64, x, y Vector, a General) {
blas64.Dger(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Syr performs a rank-1 update
// A += alpha * x * x^T,
// where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar.
func Syr(alpha float64, x Vector, a Symmetric) {
blas64.Dsyr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
}
// Spr performs the rank-1 update
// A += alpha * x * x^T,
// where A is an n×n symmetric matrix in packed format, x is a vector, and
// alpha is a scalar.
func Spr(alpha float64, x Vector, a SymmetricPacked) {
blas64.Dspr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
}
// Syr2 performs a rank-2 update
// A += alpha * x * y^T + alpha * y * x^T,
// where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
func Syr2(alpha float64, x, y Vector, a Symmetric) {
blas64.Dsyr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Spr2 performs a rank-2 update
// A += alpha * x * y^T + alpha * y * x^T,
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha is a scalar.
func Spr2(alpha float64, x, y Vector, a SymmetricPacked) {
blas64.Dspr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
}
// Level 3
// Gemm computes
// C = alpha * A * B + beta * C,
// where A, B, and C are dense matrices, and alpha and beta are scalars.
// tA and tB specify whether A or B are transposed.
func Gemm(tA, tB blas.Transpose, alpha float64, a, b General, beta float64, c General) {
var m, n, k int
if tA == blas.NoTrans {
m, k = a.Rows, a.Cols
} else {
m, k = a.Cols, a.Rows
}
if tB == blas.NoTrans {
n = b.Cols
} else {
n = b.Rows
}
blas64.Dgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Symm performs
// C = alpha * A * B + beta * C, if s == blas.Left,
// C = alpha * B * A + beta * C, if s == blas.Right,
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
// alpha is a scalar.
func Symm(s blas.Side, alpha float64, a Symmetric, b General, beta float64, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
blas64.Dsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Syrk performs a symmetric rank-k update
// C = alpha * A * A^T + beta * C, if t == blas.NoTrans,
// C = alpha * A^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and
// a k×n matrix otherwise, and alpha and beta are scalars.
func Syrk(t blas.Transpose, alpha float64, a General, beta float64, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas64.Dsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Syr2k performs a symmetric rank-2k update
// C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans,
// C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
// where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans
// and k×n matrices otherwise, and alpha and beta are scalars.
func Syr2k(t blas.Transpose, alpha float64, a, b General, beta float64, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas64.Dsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Trmm performs
// B = alpha * A * B, if tA == blas.NoTrans and s == blas.Left,
// B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// B = alpha * B * A, if tA == blas.NoTrans and s == blas.Right,
// B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
// a scalar.
func Trmm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
blas64.Dtrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Trsm solves
// A * X = alpha * B, if tA == blas.NoTrans and s == blas.Left,
// A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// X * A = alpha * B, if tA == blas.NoTrans and s == blas.Right,
// X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
// alpha is a scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in-place into X.
//
// No check is made that A is invertible.
func Trsm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
blas64.Dtrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}

View file

@ -1,277 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blas64
import "gonum.org/v1/gonum/blas"
// GeneralCols represents a matrix using the conventional column-major storage scheme.
type GeneralCols General
// From fills the receiver with elements from a. The receiver
// must have the same dimensions as a and have adequate backing
// data storage.
func (t GeneralCols) From(a General) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("blas64: mismatched dimension")
}
if len(t.Data) < (t.Cols-1)*t.Stride+t.Rows {
panic("blas64: short data slice")
}
for i := 0; i < a.Rows; i++ {
for j, v := range a.Data[i*a.Stride : i*a.Stride+a.Cols] {
t.Data[i+j*t.Stride] = v
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions as a and have adequate backing
// data storage.
func (t General) From(a GeneralCols) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("blas64: mismatched dimension")
}
if len(t.Data) < (t.Rows-1)*t.Stride+t.Cols {
panic("blas64: short data slice")
}
for j := 0; j < a.Cols; j++ {
for i, v := range a.Data[j*a.Stride : j*a.Stride+a.Rows] {
t.Data[i*t.Stride+j] = v
}
}
}
// TriangularCols represents a matrix using the conventional column-major storage scheme.
type TriangularCols Triangular
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, uplo and diag as a and have
// adequate backing data storage.
func (t TriangularCols) From(a Triangular) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("blas64: mismatched BLAS diag")
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.All:
for i := 0; i < a.N; i++ {
for j := 0; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, uplo and diag as a and have
// adequate backing data storage.
func (t Triangular) From(a TriangularCols) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("blas64: mismatched BLAS diag")
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.All:
for i := 0; i < a.N; i++ {
for j := 0; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// BandCols represents a matrix using the band column-major storage scheme.
type BandCols Band
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and bandwidth as a and have
// adequate backing data storage.
func (t BandCols) From(a Band) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("blas64: mismatched dimension")
}
if t.KL != a.KL || t.KU != a.KU {
panic("blas64: mismatched bandwidth")
}
if a.Stride < a.KL+a.KU+1 {
panic("blas64: short stride for source")
}
if t.Stride < t.KL+t.KU+1 {
panic("blas64: short stride for destination")
}
for i := 0; i < a.Rows; i++ {
for j := max(0, i-a.KL); j < min(i+a.KU+1, a.Cols); j++ {
t.Data[i+t.KU-j+j*t.Stride] = a.Data[j+a.KL-i+i*a.Stride]
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and bandwidth as a and have
// adequate backing data storage.
func (t Band) From(a BandCols) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("blas64: mismatched dimension")
}
if t.KL != a.KL || t.KU != a.KU {
panic("blas64: mismatched bandwidth")
}
if a.Stride < a.KL+a.KU+1 {
panic("blas64: short stride for source")
}
if t.Stride < t.KL+t.KU+1 {
panic("blas64: short stride for destination")
}
for j := 0; j < a.Cols; j++ {
for i := max(0, j-a.KU); i < min(j+a.KL+1, a.Rows); i++ {
t.Data[j+a.KL-i+i*a.Stride] = a.Data[i+t.KU-j+j*t.Stride]
}
}
}
// TriangularBandCols represents a symmetric matrix using the band column-major storage scheme.
type TriangularBandCols TriangularBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t TriangularBandCols) From(a TriangularBand) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.K != a.K {
panic("blas64: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("blas64: short stride for source")
}
if t.Stride < t.K+1 {
panic("blas64: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("blas64: mismatched BLAS diag")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t TriangularBand) From(a TriangularBandCols) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.K != a.K {
panic("blas64: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("blas64: short stride for source")
}
if t.Stride < t.K+1 {
panic("blas64: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("blas64: mismatched BLAS diag")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}

View file

@ -1,153 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blas64
import "gonum.org/v1/gonum/blas"
// SymmetricCols represents a matrix using the conventional column-major storage scheme.
type SymmetricCols Symmetric
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t SymmetricCols) From(a Symmetric) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t Symmetric) From(a SymmetricCols) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// SymmetricBandCols represents a symmetric matrix using the band column-major storage scheme.
type SymmetricBandCols SymmetricBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t SymmetricBandCols) From(a SymmetricBand) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.K != a.K {
panic("blas64: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("blas64: short stride for source")
}
if t.Stride < t.K+1 {
panic("blas64: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t SymmetricBand) From(a SymmetricBandCols) {
if t.N != a.N {
panic("blas64: mismatched dimension")
}
if t.K != a.K {
panic("blas64: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("blas64: short stride for source")
}
if t.Stride < t.K+1 {
panic("blas64: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("blas64: mismatched BLAS uplo")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("blas64: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}

View file

@ -1,6 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package blas64 provides a simple interface to the float64 BLAS API.
package blas64 // import "gonum.org/v1/gonum/blas/blas64"

View file

@ -1,508 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/gonum"
)
var cblas128 blas.Complex128 = gonum.Implementation{}
// Use sets the BLAS complex128 implementation to be used by subsequent BLAS calls.
// The default implementation is
// gonum.org/v1/gonum/blas/gonum.Implementation.
func Use(b blas.Complex128) {
cblas128 = b
}
// Implementation returns the current BLAS complex128 implementation.
//
// Implementation allows direct calls to the current the BLAS complex128 implementation
// giving finer control of parameters.
func Implementation() blas.Complex128 {
return cblas128
}
// Vector represents a vector with an associated element increment.
type Vector struct {
Inc int
Data []complex128
}
// General represents a matrix using the conventional storage scheme.
type General struct {
Rows, Cols int
Stride int
Data []complex128
}
// Band represents a band matrix using the band storage scheme.
type Band struct {
Rows, Cols int
KL, KU int
Stride int
Data []complex128
}
// Triangular represents a triangular matrix using the conventional storage scheme.
type Triangular struct {
N int
Stride int
Data []complex128
Uplo blas.Uplo
Diag blas.Diag
}
// TriangularBand represents a triangular matrix using the band storage scheme.
type TriangularBand struct {
N, K int
Stride int
Data []complex128
Uplo blas.Uplo
Diag blas.Diag
}
// TriangularPacked represents a triangular matrix using the packed storage scheme.
type TriangularPacked struct {
N int
Data []complex128
Uplo blas.Uplo
Diag blas.Diag
}
// Symmetric represents a symmetric matrix using the conventional storage scheme.
type Symmetric struct {
N int
Stride int
Data []complex128
Uplo blas.Uplo
}
// SymmetricBand represents a symmetric matrix using the band storage scheme.
type SymmetricBand struct {
N, K int
Stride int
Data []complex128
Uplo blas.Uplo
}
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
type SymmetricPacked struct {
N int
Data []complex128
Uplo blas.Uplo
}
// Hermitian represents an Hermitian matrix using the conventional storage scheme.
type Hermitian Symmetric
// HermitianBand represents an Hermitian matrix using the band storage scheme.
type HermitianBand SymmetricBand
// HermitianPacked represents an Hermitian matrix using the packed storage scheme.
type HermitianPacked SymmetricPacked
// Level 1
const negInc = "cblas128: negative vector increment"
// Dotu computes the dot product of the two vectors without
// complex conjugation:
// x^T * y.
func Dotu(n int, x, y Vector) complex128 {
return cblas128.Zdotu(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Dotc computes the dot product of the two vectors with
// complex conjugation:
// x^H * y.
func Dotc(n int, x, y Vector) complex128 {
return cblas128.Zdotc(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Nrm2 computes the Euclidean norm of the vector x:
// sqrt(\sum_i x[i] * x[i]).
//
// Nrm2 will panic if the vector increment is negative.
func Nrm2(n int, x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return cblas128.Dznrm2(n, x.Data, x.Inc)
}
// Asum computes the sum of magnitudes of the real and imaginary parts of
// elements of the vector x:
// \sum_i (|Re x[i]| + |Im x[i]|).
//
// Asum will panic if the vector increment is negative.
func Asum(n int, x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return cblas128.Dzasum(n, x.Data, x.Inc)
}
// Iamax returns the index of an element of x with the largest sum of
// magnitudes of the real and imaginary parts (|Re x[i]|+|Im x[i]|).
// If there are multiple such indices, the earliest is returned.
//
// Iamax returns -1 if n == 0.
//
// Iamax will panic if the vector increment is negative.
func Iamax(n int, x Vector) int {
if x.Inc < 0 {
panic(negInc)
}
return cblas128.Izamax(n, x.Data, x.Inc)
}
// Swap exchanges the elements of two vectors:
// x[i], y[i] = y[i], x[i] for all i.
func Swap(n int, x, y Vector) {
cblas128.Zswap(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Copy copies the elements of x into the elements of y:
// y[i] = x[i] for all i.
func Copy(n int, x, y Vector) {
cblas128.Zcopy(n, x.Data, x.Inc, y.Data, y.Inc)
}
// Axpy computes
// y = alpha * x + y,
// where x and y are vectors, and alpha is a scalar.
func Axpy(n int, alpha complex128, x, y Vector) {
cblas128.Zaxpy(n, alpha, x.Data, x.Inc, y.Data, y.Inc)
}
// Scal computes
// x = alpha * x,
// where x is a vector, and alpha is a scalar.
//
// Scal will panic if the vector increment is negative.
func Scal(n int, alpha complex128, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
cblas128.Zscal(n, alpha, x.Data, x.Inc)
}
// Dscal computes
// x = alpha * x,
// where x is a vector, and alpha is a real scalar.
//
// Dscal will panic if the vector increment is negative.
func Dscal(n int, alpha float64, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
cblas128.Zdscal(n, alpha, x.Data, x.Inc)
}
// Level 2
// Gemv computes
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
// y = alpha * A^T * x + beta * y, if t == blas.Trans,
// y = alpha * A^H * x + beta * y, if t == blas.ConjTrans,
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are
// scalars.
func Gemv(t blas.Transpose, alpha complex128, a General, x Vector, beta complex128, y Vector) {
cblas128.Zgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Gbmv computes
// y = alpha * A * x + beta * y, if t == blas.NoTrans,
// y = alpha * A^T * x + beta * y, if t == blas.Trans,
// y = alpha * A^H * x + beta * y, if t == blas.ConjTrans,
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are
// scalars.
func Gbmv(t blas.Transpose, alpha complex128, a Band, x Vector, beta complex128, y Vector) {
cblas128.Zgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Trmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans,
// x = A^H * x, if t == blas.ConjTrans,
// where A is an n×n triangular matrix, and x is a vector.
func Trmv(t blas.Transpose, a Triangular, x Vector) {
cblas128.Ztrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans,
// x = A^H * x, if t == blas.ConjTrans,
// where A is an n×n triangular band matrix, and x is a vector.
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
cblas128.Ztbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpmv computes
// x = A * x, if t == blas.NoTrans,
// x = A^T * x, if t == blas.Trans,
// x = A^H * x, if t == blas.ConjTrans,
// where A is an n×n triangular matrix in packed format, and x is a vector.
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
cblas128.Ztpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Trsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans,
// A^H * x = b, if t == blas.ConjTrans,
// where A is an n×n triangular matrix and x is a vector.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Trsv(t blas.Transpose, a Triangular, x Vector) {
cblas128.Ztrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans,
// A^H * x = b, if t == blas.ConjTrans,
// where A is an n×n triangular band matrix, and x is a vector.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
cblas128.Ztbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpsv solves
// A * x = b, if t == blas.NoTrans,
// A^T * x = b, if t == blas.Trans,
// A^H * x = b, if t == blas.ConjTrans,
// where A is an n×n triangular matrix in packed format and x is a vector.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
cblas128.Ztpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Hemv computes
// y = alpha * A * x + beta * y,
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha and
// beta are scalars.
func Hemv(alpha complex128, a Hermitian, x Vector, beta complex128, y Vector) {
cblas128.Zhemv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Hbmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n Hermitian band matrix, x and y are vectors, and alpha
// and beta are scalars.
func Hbmv(alpha complex128, a HermitianBand, x Vector, beta complex128, y Vector) {
cblas128.Zhbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Hpmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
// and alpha and beta are scalars.
func Hpmv(alpha complex128, a HermitianPacked, x Vector, beta complex128, y Vector) {
cblas128.Zhpmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Geru performs a rank-1 update
// A += alpha * x * y^T,
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Geru(alpha complex128, x, y Vector, a General) {
cblas128.Zgeru(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Gerc performs a rank-1 update
// A += alpha * x * y^H,
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Gerc(alpha complex128, x, y Vector, a General) {
cblas128.Zgerc(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Her performs a rank-1 update
// A += alpha * x * y^T,
// where A is an m×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
func Her(alpha float64, x Vector, a Hermitian) {
cblas128.Zher(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
}
// Hpr performs a rank-1 update
// A += alpha * x * x^H,
// where A is an n×n Hermitian matrix in packed format, x is a vector, and
// alpha is a scalar.
func Hpr(alpha float64, x Vector, a HermitianPacked) {
cblas128.Zhpr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
}
// Her2 performs a rank-2 update
// A += alpha * x * y^H + conj(alpha) * y * x^H,
// where A is an n×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
func Her2(alpha complex128, x, y Vector, a Hermitian) {
cblas128.Zher2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Hpr2 performs a rank-2 update
// A += alpha * x * y^H + conj(alpha) * y * x^H,
// where A is an n×n Hermitian matrix in packed format, x and y are vectors,
// and alpha is a scalar.
func Hpr2(alpha complex128, x, y Vector, a HermitianPacked) {
cblas128.Zhpr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
}
// Level 3
// Gemm computes
// C = alpha * A * B + beta * C,
// where A, B, and C are dense matrices, and alpha and beta are scalars.
// tA and tB specify whether A or B are transposed or conjugated.
func Gemm(tA, tB blas.Transpose, alpha complex128, a, b General, beta complex128, c General) {
var m, n, k int
if tA == blas.NoTrans {
m, k = a.Rows, a.Cols
} else {
m, k = a.Cols, a.Rows
}
if tB == blas.NoTrans {
n = b.Cols
} else {
n = b.Rows
}
cblas128.Zgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Symm performs
// C = alpha * A * B + beta * C, if s == blas.Left,
// C = alpha * B * A + beta * C, if s == blas.Right,
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
// alpha and beta are scalars.
func Symm(s blas.Side, alpha complex128, a Symmetric, b General, beta complex128, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
cblas128.Zsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Syrk performs a symmetric rank-k update
// C = alpha * A * A^T + beta * C, if t == blas.NoTrans,
// C = alpha * A^T * A + beta * C, if t == blas.Trans,
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans
// and a k×n matrix otherwise, and alpha and beta are scalars.
func Syrk(t blas.Transpose, alpha complex128, a General, beta complex128, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Syr2k performs a symmetric rank-2k update
// C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans,
// C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans,
// where C is an n×n symmetric matrix, A and B are n×k matrices if
// t == blas.NoTrans and k×n otherwise, and alpha and beta are scalars.
func Syr2k(t blas.Transpose, alpha complex128, a, b General, beta complex128, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Trmm performs
// B = alpha * A * B, if tA == blas.NoTrans and s == blas.Left,
// B = alpha * A^T * B, if tA == blas.Trans and s == blas.Left,
// B = alpha * A^H * B, if tA == blas.ConjTrans and s == blas.Left,
// B = alpha * B * A, if tA == blas.NoTrans and s == blas.Right,
// B = alpha * B * A^T, if tA == blas.Trans and s == blas.Right,
// B = alpha * B * A^H, if tA == blas.ConjTrans and s == blas.Right,
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
// a scalar.
func Trmm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
cblas128.Ztrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Trsm solves
// A * X = alpha * B, if tA == blas.NoTrans and s == blas.Left,
// A^T * X = alpha * B, if tA == blas.Trans and s == blas.Left,
// A^H * X = alpha * B, if tA == blas.ConjTrans and s == blas.Left,
// X * A = alpha * B, if tA == blas.NoTrans and s == blas.Right,
// X * A^T = alpha * B, if tA == blas.Trans and s == blas.Right,
// X * A^H = alpha * B, if tA == blas.ConjTrans and s == blas.Right,
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
// alpha is a scalar.
//
// At entry to the function, b contains the values of B, and the result is
// stored in-place into b.
//
// No check is made that A is invertible.
func Trsm(s blas.Side, tA blas.Transpose, alpha complex128, a Triangular, b General) {
cblas128.Ztrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Hemm performs
// C = alpha * A * B + beta * C, if s == blas.Left,
// C = alpha * B * A + beta * C, if s == blas.Right,
// where A is an n×n or m×m Hermitian matrix, B and C are m×n matrices, and
// alpha and beta are scalars.
func Hemm(s blas.Side, alpha complex128, a Hermitian, b General, beta complex128, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
cblas128.Zhemm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Herk performs the Hermitian rank-k update
// C = alpha * A * A^H + beta*C, if t == blas.NoTrans,
// C = alpha * A^H * A + beta*C, if t == blas.ConjTrans,
// where C is an n×n Hermitian matrix, A is an n×k matrix if t == blas.NoTrans
// and a k×n matrix otherwise, and alpha and beta are scalars.
func Herk(t blas.Transpose, alpha float64, a General, beta float64, c Hermitian) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zherk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Her2k performs the Hermitian rank-2k update
// C = alpha * A * B^H + conj(alpha) * B * A^H + beta * C, if t == blas.NoTrans,
// C = alpha * A^H * B + conj(alpha) * B^H * A + beta * C, if t == blas.ConjTrans,
// where C is an n×n Hermitian matrix, A and B are n×k matrices if t == NoTrans
// and k×n matrices otherwise, and alpha and beta are scalars.
func Her2k(t blas.Transpose, alpha complex128, a, b General, beta float64, c Hermitian) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
cblas128.Zher2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}

View file

@ -1,279 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import "gonum.org/v1/gonum/blas"
// GeneralCols represents a matrix using the conventional column-major storage scheme.
type GeneralCols General
// From fills the receiver with elements from a. The receiver
// must have the same dimensions as a and have adequate backing
// data storage.
func (t GeneralCols) From(a General) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if len(t.Data) < (t.Cols-1)*t.Stride+t.Rows {
panic("cblas128: short data slice")
}
for i := 0; i < a.Rows; i++ {
for j, v := range a.Data[i*a.Stride : i*a.Stride+a.Cols] {
t.Data[i+j*t.Stride] = v
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions as a and have adequate backing
// data storage.
func (t General) From(a GeneralCols) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if len(t.Data) < (t.Rows-1)*t.Stride+t.Cols {
panic("cblas128: short data slice")
}
for j := 0; j < a.Cols; j++ {
for i, v := range a.Data[j*a.Stride : j*a.Stride+a.Rows] {
t.Data[i*t.Stride+j] = v
}
}
}
// TriangularCols represents a matrix using the conventional column-major storage scheme.
type TriangularCols Triangular
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, uplo and diag as a and have
// adequate backing data storage.
func (t TriangularCols) From(a Triangular) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.All:
for i := 0; i < a.N; i++ {
for j := 0; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, uplo and diag as a and have
// adequate backing data storage.
func (t Triangular) From(a TriangularCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.All:
for i := 0; i < a.N; i++ {
for j := 0; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// BandCols represents a matrix using the band column-major storage scheme.
type BandCols Band
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and bandwidth as a and have
// adequate backing data storage.
func (t BandCols) From(a Band) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if t.KL != a.KL || t.KU != a.KU {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.KL+a.KU+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.KL+t.KU+1 {
panic("cblas128: short stride for destination")
}
for i := 0; i < a.Rows; i++ {
for j := max(0, i-a.KL); j < min(i+a.KU+1, a.Cols); j++ {
t.Data[i+t.KU-j+j*t.Stride] = a.Data[j+a.KL-i+i*a.Stride]
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and bandwidth as a and have
// adequate backing data storage.
func (t Band) From(a BandCols) {
if t.Rows != a.Rows || t.Cols != a.Cols {
panic("cblas128: mismatched dimension")
}
if t.KL != a.KL || t.KU != a.KU {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.KL+a.KU+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.KL+t.KU+1 {
panic("cblas128: short stride for destination")
}
for j := 0; j < a.Cols; j++ {
for i := max(0, j-a.KU); i < min(j+a.KL+1, a.Rows); i++ {
t.Data[j+a.KL-i+i*a.Stride] = a.Data[i+t.KU-j+j*t.Stride]
}
}
}
// TriangularBandCols represents a symmetric matrix using the band column-major storage scheme.
type TriangularBandCols TriangularBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t TriangularBandCols) From(a TriangularBand) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t TriangularBand) From(a TriangularBandCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
if t.Diag != a.Diag {
panic("cblas128: mismatched BLAS diag")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}

View file

@ -1,155 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import "gonum.org/v1/gonum/blas"
// HermitianCols represents a matrix using the conventional column-major storage scheme.
type HermitianCols Hermitian
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t HermitianCols) From(a Hermitian) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t Hermitian) From(a HermitianCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// HermitianBandCols represents an Hermitian matrix using the band column-major storage scheme.
type HermitianBandCols HermitianBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t HermitianBandCols) From(a HermitianBand) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t HermitianBand) From(a HermitianBandCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}

View file

@ -1,155 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cblas128
import "gonum.org/v1/gonum/blas"
// SymmetricCols represents a matrix using the conventional column-major storage scheme.
type SymmetricCols Symmetric
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t SymmetricCols) From(a Symmetric) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i+j*t.Stride] = a.Data[i*a.Stride+j]
}
}
}
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions and uplo as a and have adequate
// backing data storage.
func (t Symmetric) From(a SymmetricCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
case blas.Lower:
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
t.Data[i*t.Stride+j] = a.Data[i+j*a.Stride]
}
}
}
}
// SymmetricBandCols represents a symmetric matrix using the band column-major storage scheme.
type SymmetricBandCols SymmetricBand
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t SymmetricBandCols) From(a SymmetricBand) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := BandCols{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := Band{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}
// From fills the receiver with elements from a. The receiver
// must have the same dimensions, bandwidth and uplo as a and
// have adequate backing data storage.
func (t SymmetricBand) From(a SymmetricBandCols) {
if t.N != a.N {
panic("cblas128: mismatched dimension")
}
if t.K != a.K {
panic("cblas128: mismatched bandwidth")
}
if a.Stride < a.K+1 {
panic("cblas128: short stride for source")
}
if t.Stride < t.K+1 {
panic("cblas128: short stride for destination")
}
if t.Uplo != a.Uplo {
panic("cblas128: mismatched BLAS uplo")
}
dst := Band{
Rows: t.N, Cols: t.N,
Stride: t.Stride,
Data: t.Data,
}
src := BandCols{
Rows: a.N, Cols: a.N,
Stride: a.Stride,
Data: a.Data,
}
switch a.Uplo {
default:
panic("cblas128: bad BLAS uplo")
case blas.Upper:
dst.KU = t.K
src.KU = a.K
case blas.Lower:
dst.KL = t.K
src.KL = a.K
}
dst.From(src)
}

View file

@ -1,6 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package cblas128 provides a simple interface to the complex128 BLAS API.
package cblas128 // import "gonum.org/v1/gonum/blas/cblas128"

View file

@ -1,159 +0,0 @@
#!/usr/bin/env bash
# Copyright ©2017 The Gonum Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
# Generate code for blas32.
echo Generating blas32/conv.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv.go
cat blas64/conv.go \
| gofmt -r 'float64 -> float32' \
\
| sed -e 's/blas64/blas32/' \
\
>> blas32/conv.go
echo Generating blas32/conv_test.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv_test.go
cat blas64/conv_test.go \
| gofmt -r 'float64 -> float32' \
\
| sed -e 's/blas64/blas32/' \
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
\
>> blas32/conv_test.go
echo Generating blas32/conv_symmetric.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv_symmetric.go
cat blas64/conv_symmetric.go \
| gofmt -r 'float64 -> float32' \
\
| sed -e 's/blas64/blas32/' \
\
>> blas32/conv_symmetric.go
echo Generating blas32/conv_symmetric_test.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > blas32/conv_symmetric_test.go
cat blas64/conv_symmetric_test.go \
| gofmt -r 'float64 -> float32' \
\
| sed -e 's/blas64/blas32/' \
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
\
>> blas32/conv_symmetric_test.go
# Generate code for cblas128.
echo Generating cblas128/conv.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv.go
cat blas64/conv.go \
| gofmt -r 'float64 -> complex128' \
\
| sed -e 's/blas64/cblas128/' \
\
>> cblas128/conv.go
echo Generating cblas128/conv_test.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_test.go
cat blas64/conv_test.go \
| gofmt -r 'float64 -> complex128' \
\
| sed -e 's/blas64/cblas128/' \
-e 's_"math"_math "math/cmplx"_' \
\
>> cblas128/conv_test.go
echo Generating cblas128/conv_symmetric.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_symmetric.go
cat blas64/conv_symmetric.go \
| gofmt -r 'float64 -> complex128' \
\
| sed -e 's/blas64/cblas128/' \
\
>> cblas128/conv_symmetric.go
echo Generating cblas128/conv_symmetric_test.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_symmetric_test.go
cat blas64/conv_symmetric_test.go \
| gofmt -r 'float64 -> complex128' \
\
| sed -e 's/blas64/cblas128/' \
-e 's_"math"_math "math/cmplx"_' \
\
>> cblas128/conv_symmetric_test.go
echo Generating cblas128/conv_hermitian.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_hermitian.go
cat blas64/conv_symmetric.go \
| gofmt -r 'float64 -> complex128' \
\
| sed -e 's/blas64/cblas128/' \
-e 's/Symmetric/Hermitian/g' \
-e 's/a symmetric/an Hermitian/g' \
-e 's/symmetric/hermitian/g' \
-e 's/Sym/Herm/g' \
\
>> cblas128/conv_hermitian.go
echo Generating cblas128/conv_hermitian_test.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas128/conv_hermitian_test.go
cat blas64/conv_symmetric_test.go \
| gofmt -r 'float64 -> complex128' \
\
| sed -e 's/blas64/cblas128/' \
-e 's/Symmetric/Hermitian/g' \
-e 's/a symmetric/an Hermitian/g' \
-e 's/symmetric/hermitian/g' \
-e 's/Sym/Herm/g' \
-e 's_"math"_math "math/cmplx"_' \
\
>> cblas128/conv_hermitian_test.go
# Generate code for cblas64.
echo Generating cblas64/conv.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv.go
cat blas64/conv.go \
| gofmt -r 'float64 -> complex64' \
\
| sed -e 's/blas64/cblas64/' \
\
>> cblas64/conv.go
echo Generating cblas64/conv_test.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv_test.go
cat blas64/conv_test.go \
| gofmt -r 'float64 -> complex64' \
\
| sed -e 's/blas64/cblas64/' \
-e 's_"math"_math "gonum.org/v1/gonum/internal/cmplx64"_' \
\
>> cblas64/conv_test.go
echo Generating cblas64/conv_hermitian.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv_hermitian.go
cat blas64/conv_symmetric.go \
| gofmt -r 'float64 -> complex64' \
\
| sed -e 's/blas64/cblas64/' \
-e 's/Symmetric/Hermitian/g' \
-e 's/a symmetric/an Hermitian/g' \
-e 's/symmetric/hermitian/g' \
-e 's/Sym/Herm/g' \
\
>> cblas64/conv_hermitian.go
echo Generating cblas64/conv_hermitian_test.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas”; DO NOT EDIT.\n' > cblas64/conv_hermitian_test.go
cat blas64/conv_symmetric_test.go \
| gofmt -r 'float64 -> complex64' \
\
| sed -e 's/blas64/cblas64/' \
-e 's/Symmetric/Hermitian/g' \
-e 's/a symmetric/an Hermitian/g' \
-e 's/symmetric/hermitian/g' \
-e 's/Sym/Herm/g' \
-e 's_"math"_math "gonum.org/v1/gonum/internal/cmplx64"_' \
\
>> cblas64/conv_hermitian_test.go

108
vendor/gonum.org/v1/gonum/blas/doc.go generated vendored
View file

@ -1,108 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package blas provides interfaces for the BLAS linear algebra standard.
All methods must perform appropriate parameter checking and panic if
provided parameters that do not conform to the requirements specified
by the BLAS standard.
Quick Reference Guide to the BLAS from http://www.netlib.org/lapack/lug/node145.html
This version is modified to remove the "order" option. All matrix operations are
on row-order matrices.
Level 1 BLAS
dim scalar vector vector scalars 5-element prefixes
struct
_rotg ( a, b ) S, D
_rotmg( d1, d2, a, b ) S, D
_rot ( n, x, incX, y, incY, c, s ) S, D
_rotm ( n, x, incX, y, incY, param ) S, D
_swap ( n, x, incX, y, incY ) S, D, C, Z
_scal ( n, alpha, x, incX ) S, D, C, Z, Cs, Zd
_copy ( n, x, incX, y, incY ) S, D, C, Z
_axpy ( n, alpha, x, incX, y, incY ) S, D, C, Z
_dot ( n, x, incX, y, incY ) S, D, Ds
_dotu ( n, x, incX, y, incY ) C, Z
_dotc ( n, x, incX, y, incY ) C, Z
__dot ( n, alpha, x, incX, y, incY ) Sds
_nrm2 ( n, x, incX ) S, D, Sc, Dz
_asum ( n, x, incX ) S, D, Sc, Dz
I_amax( n, x, incX ) s, d, c, z
Level 2 BLAS
options dim b-width scalar matrix vector scalar vector prefixes
_gemv ( trans, m, n, alpha, a, lda, x, incX, beta, y, incY ) S, D, C, Z
_gbmv ( trans, m, n, kL, kU, alpha, a, lda, x, incX, beta, y, incY ) S, D, C, Z
_hemv ( uplo, n, alpha, a, lda, x, incX, beta, y, incY ) C, Z
_hbmv ( uplo, n, k, alpha, a, lda, x, incX, beta, y, incY ) C, Z
_hpmv ( uplo, n, alpha, ap, x, incX, beta, y, incY ) C, Z
_symv ( uplo, n, alpha, a, lda, x, incX, beta, y, incY ) S, D
_sbmv ( uplo, n, k, alpha, a, lda, x, incX, beta, y, incY ) S, D
_spmv ( uplo, n, alpha, ap, x, incX, beta, y, incY ) S, D
_trmv ( uplo, trans, diag, n, a, lda, x, incX ) S, D, C, Z
_tbmv ( uplo, trans, diag, n, k, a, lda, x, incX ) S, D, C, Z
_tpmv ( uplo, trans, diag, n, ap, x, incX ) S, D, C, Z
_trsv ( uplo, trans, diag, n, a, lda, x, incX ) S, D, C, Z
_tbsv ( uplo, trans, diag, n, k, a, lda, x, incX ) S, D, C, Z
_tpsv ( uplo, trans, diag, n, ap, x, incX ) S, D, C, Z
options dim scalar vector vector matrix prefixes
_ger ( m, n, alpha, x, incX, y, incY, a, lda ) S, D
_geru ( m, n, alpha, x, incX, y, incY, a, lda ) C, Z
_gerc ( m, n, alpha, x, incX, y, incY, a, lda ) C, Z
_her ( uplo, n, alpha, x, incX, a, lda ) C, Z
_hpr ( uplo, n, alpha, x, incX, ap ) C, Z
_her2 ( uplo, n, alpha, x, incX, y, incY, a, lda ) C, Z
_hpr2 ( uplo, n, alpha, x, incX, y, incY, ap ) C, Z
_syr ( uplo, n, alpha, x, incX, a, lda ) S, D
_spr ( uplo, n, alpha, x, incX, ap ) S, D
_syr2 ( uplo, n, alpha, x, incX, y, incY, a, lda ) S, D
_spr2 ( uplo, n, alpha, x, incX, y, incY, ap ) S, D
Level 3 BLAS
options dim scalar matrix matrix scalar matrix prefixes
_gemm ( transA, transB, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
_symm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
_hemm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc ) C, Z
_syrk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc ) S, D, C, Z
_herk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc ) C, Z
_syr2k( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) S, D, C, Z
_her2k( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) C, Z
_trmm ( side, uplo, transA, diag, m, n, alpha, a, lda, b, ldb ) S, D, C, Z
_trsm ( side, uplo, transA, diag, m, n, alpha, a, lda, b, ldb ) S, D, C, Z
Meaning of prefixes
S - float32 C - complex64
D - float64 Z - complex128
Matrix types
GE - GEneral GB - General Band
SY - SYmmetric SB - Symmetric Band SP - Symmetric Packed
HE - HErmitian HB - Hermitian Band HP - Hermitian Packed
TR - TRiangular TB - Triangular Band TP - Triangular Packed
Options
trans = NoTrans, Trans, ConjTrans
uplo = Upper, Lower
diag = Nonunit, Unit
side = Left, Right (A or op(A) on the left, or A or op(A) on the right)
For real matrices, Trans and ConjTrans have the same meaning.
For Hermitian matrices, trans = Trans is not allowed.
For complex symmetric matrices, trans = ConjTrans is not allowed.
*/
package blas // import "gonum.org/v1/gonum/blas"

View file

@ -1,314 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"runtime"
"sync"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f64"
)
// Dgemm performs one of the matrix-matrix operations
// C = alpha * A * B + beta * C
// C = alpha * A^T * B + beta * C
// C = alpha * A * B^T + beta * C
// C = alpha * A^T * B^T + beta * C
// where A is an m×k or k×m dense matrix, B is an n×k or k×n dense matrix, C is
// an m×n matrix, and alpha and beta are scalars. tA and tB specify whether A or
// B are transposed.
func (Implementation) Dgemm(tA, tB blas.Transpose, m, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
switch tA {
default:
panic(badTranspose)
case blas.NoTrans, blas.Trans, blas.ConjTrans:
}
switch tB {
default:
panic(badTranspose)
case blas.NoTrans, blas.Trans, blas.ConjTrans:
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
aTrans := tA == blas.Trans || tA == blas.ConjTrans
if aTrans {
if lda < max(1, m) {
panic(badLdA)
}
} else {
if lda < max(1, k) {
panic(badLdA)
}
}
bTrans := tB == blas.Trans || tB == blas.ConjTrans
if bTrans {
if ldb < max(1, k) {
panic(badLdB)
}
} else {
if ldb < max(1, n) {
panic(badLdB)
}
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if aTrans {
if len(a) < (k-1)*lda+m {
panic(shortA)
}
} else {
if len(a) < (m-1)*lda+k {
panic(shortA)
}
}
if bTrans {
if len(b) < (n-1)*ldb+k {
panic(shortB)
}
} else {
if len(b) < (k-1)*ldb+n {
panic(shortB)
}
}
if len(c) < (m-1)*ldc+n {
panic(shortC)
}
// Quick return if possible.
if (alpha == 0 || k == 0) && beta == 1 {
return
}
// scale c
if beta != 1 {
if beta == 0 {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
} else {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
}
}
dgemmParallel(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
}
func dgemmParallel(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// dgemmParallel computes a parallel matrix multiplication by partitioning
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
// In all cases,
// A = [ A_11 A_12 ... A_1j
// A_21 A_22 ... A_2j
// ...
// A_i1 A_i2 ... A_ij]
//
// and same for B. All of the submatrix sizes are blockSize×blockSize except
// at the edges.
//
// In all cases, there is one dimension for each matrix along which
// C must be updated sequentially.
// Cij = \sum_k Aik Bki, (A * B)
// Cij = \sum_k Aki Bkj, (A^T * B)
// Cij = \sum_k Aik Bjk, (A * B^T)
// Cij = \sum_k Aki Bjk, (A^T * B^T)
//
// This code computes one {i, j} block sequentially along the k dimension,
// and computes all of the {i, j} blocks concurrently. This
// partitioning allows Cij to be updated in-place without race-conditions.
// Instead of launching a goroutine for each possible concurrent computation,
// a number of worker goroutines are created and channels are used to pass
// available and completed cases.
//
// http://alexkr.com/docs/matrixmult.pdf is a good reference on matrix-matrix
// multiplies, though this code does not copy matrices to attempt to eliminate
// cache misses.
maxKLen := k
parBlocks := blocks(m, blockSize) * blocks(n, blockSize)
if parBlocks < minParBlock {
// The matrix multiplication is small in the dimensions where it can be
// computed concurrently. Just do it in serial.
dgemmSerial(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
}
nWorkers := runtime.GOMAXPROCS(0)
if parBlocks < nWorkers {
nWorkers = parBlocks
}
// There is a tradeoff between the workers having to wait for work
// and a large buffer making operations slow.
buf := buffMul * nWorkers
if buf > parBlocks {
buf = parBlocks
}
sendChan := make(chan subMul, buf)
// Launch workers. A worker receives an {i, j} submatrix of c, and computes
// A_ik B_ki (or the transposed version) storing the result in c_ij. When the
// channel is finally closed, it signals to the waitgroup that it has finished
// computing.
var wg sync.WaitGroup
for i := 0; i < nWorkers; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for sub := range sendChan {
i := sub.i
j := sub.j
leni := blockSize
if i+leni > m {
leni = m - i
}
lenj := blockSize
if j+lenj > n {
lenj = n - j
}
cSub := sliceView64(c, ldc, i, j, leni, lenj)
// Compute A_ik B_kj for all k
for k := 0; k < maxKLen; k += blockSize {
lenk := blockSize
if k+lenk > maxKLen {
lenk = maxKLen - k
}
var aSub, bSub []float64
if aTrans {
aSub = sliceView64(a, lda, k, i, lenk, leni)
} else {
aSub = sliceView64(a, lda, i, k, leni, lenk)
}
if bTrans {
bSub = sliceView64(b, ldb, j, k, lenj, lenk)
} else {
bSub = sliceView64(b, ldb, k, j, lenk, lenj)
}
dgemmSerial(aTrans, bTrans, leni, lenj, lenk, aSub, lda, bSub, ldb, cSub, ldc, alpha)
}
}
}()
}
// Send out all of the {i, j} subblocks for computation.
for i := 0; i < m; i += blockSize {
for j := 0; j < n; j += blockSize {
sendChan <- subMul{
i: i,
j: j,
}
}
}
close(sendChan)
wg.Wait()
}
// dgemmSerial is serial matrix multiply
func dgemmSerial(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
switch {
case !aTrans && !bTrans:
dgemmSerialNotNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case aTrans && !bTrans:
dgemmSerialTransNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case !aTrans && bTrans:
dgemmSerialNotTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case aTrans && bTrans:
dgemmSerialTransTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
default:
panic("unreachable")
}
}
// dgemmSerial where neither a nor b are transposed
func dgemmSerialNotNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for l, v := range a[i*lda : i*lda+k] {
tmp := alpha * v
if tmp != 0 {
f64.AxpyUnitary(tmp, b[l*ldb:l*ldb+n], ctmp)
}
}
}
}
// dgemmSerial where neither a is transposed and b is not
func dgemmSerialTransNot(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for l := 0; l < k; l++ {
btmp := b[l*ldb : l*ldb+n]
for i, v := range a[l*lda : l*lda+m] {
tmp := alpha * v
if tmp != 0 {
ctmp := c[i*ldc : i*ldc+n]
f64.AxpyUnitary(tmp, btmp, ctmp)
}
}
}
}
// dgemmSerial where neither a is not transposed and b is
func dgemmSerialNotTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for i := 0; i < m; i++ {
atmp := a[i*lda : i*lda+k]
ctmp := c[i*ldc : i*ldc+n]
for j := 0; j < n; j++ {
ctmp[j] += alpha * f64.DotUnitary(atmp, b[j*ldb:j*ldb+k])
}
}
}
// dgemmSerial where both are transposed
func dgemmSerialTransTrans(m, n, k int, a []float64, lda int, b []float64, ldb int, c []float64, ldc int, alpha float64) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for l := 0; l < k; l++ {
for i, v := range a[l*lda : l*lda+m] {
tmp := alpha * v
if tmp != 0 {
ctmp := c[i*ldc : i*ldc+n]
f64.AxpyInc(tmp, b[l:], ctmp, uintptr(n), uintptr(ldb), 1, 0, 0)
}
}
}
}
func sliceView64(a []float64, lda, i, j, r, c int) []float64 {
return a[i*lda+j : (i+r-1)*lda+j+c]
}

View file

@ -1,88 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Ensure changes made to blas/native are reflected in blas/cgo where relevant.
/*
Package gonum is a Go implementation of the BLAS API. This implementation
panics when the input arguments are invalid as per the standard, for example
if a vector increment is zero. Note that the treatment of NaN values
is not specified, and differs among the BLAS implementations.
gonum.org/v1/gonum/blas/blas64 provides helpful wrapper functions to the BLAS
interface. The rest of this text describes the layout of the data for the input types.
Note that in the function documentation, x[i] refers to the i^th element
of the vector, which will be different from the i^th element of the slice if
incX != 1.
See http://www.netlib.org/lapack/explore-html/d4/de1/_l_i_c_e_n_s_e_source.html
for more license information.
Vector arguments are effectively strided slices. They have two input arguments,
a number of elements, n, and an increment, incX. The increment specifies the
distance between elements of the vector. The actual Go slice may be longer
than necessary.
The increment may be positive or negative, except in functions with only
a single vector argument where the increment may only be positive. If the increment
is negative, s[0] is the last element in the slice. Note that this is not the same
as counting backward from the end of the slice, as len(s) may be longer than
necessary. So, for example, if n = 5 and incX = 3, the elements of s are
[0 * * 1 * * 2 * * 3 * * 4 * * * ...]
where elements are never accessed. If incX = -3, the same elements are
accessed, just in reverse order (4, 3, 2, 1, 0).
Dense matrices are specified by a number of rows, a number of columns, and a stride.
The stride specifies the number of entries in the slice between the first element
of successive rows. The stride must be at least as large as the number of columns
but may be longer.
[a00 ... a0n a0* ... a1stride-1 a21 ... amn am* ... amstride-1]
Thus, dense[i*ld + j] refers to the {i, j}th element of the matrix.
Symmetric and triangular matrices (non-packed) are stored identically to Dense,
except that only elements in one triangle of the matrix are accessed.
Packed symmetric and packed triangular matrices are laid out with the entries
condensed such that all of the unreferenced elements are removed. So, the upper triangular
matrix
[
1 2 3
0 4 5
0 0 6
]
and the lower-triangular matrix
[
1 0 0
2 3 0
4 5 6
]
will both be compacted as [1 2 3 4 5 6]. The (i, j) element of the original
dense matrix can be found at element i*n - (i-1)*i/2 + j for upper triangular,
and at element i * (i+1) /2 + j for lower triangular.
Banded matrices are laid out in a compact format, constructed by removing the
zeros in the rows and aligning the diagonals. For example, the matrix
[
1 2 3 0 0 0
4 5 6 7 0 0
0 8 9 10 11 0
0 0 12 13 14 15
0 0 0 16 17 18
0 0 0 0 19 20
]
implicitly becomes ( entries are never accessed)
[
* 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 *
19 20 * *
]
which is given to the BLAS routine as [ 1 2 3 4 ...].
See http://www.crest.iu.edu/research/mtl/reference/html/banded.html
for more information
*/
package gonum // import "gonum.org/v1/gonum/blas/gonum"

View file

@ -1,35 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
// Panic strings used during parameter checks.
// This list is duplicated in netlib/blas/netlib. Keep in sync.
const (
zeroIncX = "blas: zero x index increment"
zeroIncY = "blas: zero y index increment"
mLT0 = "blas: m < 0"
nLT0 = "blas: n < 0"
kLT0 = "blas: k < 0"
kLLT0 = "blas: kL < 0"
kULT0 = "blas: kU < 0"
badUplo = "blas: illegal triangle"
badTranspose = "blas: illegal transpose"
badDiag = "blas: illegal diagonal"
badSide = "blas: illegal side"
badFlag = "blas: illegal rotm flag"
badLdA = "blas: bad leading dimension of A"
badLdB = "blas: bad leading dimension of B"
badLdC = "blas: bad leading dimension of C"
shortX = "blas: insufficient length of x"
shortY = "blas: insufficient length of y"
shortAP = "blas: insufficient length of ap"
shortA = "blas: insufficient length of a"
shortB = "blas: insufficient length of b"
shortC = "blas: insufficient length of c"
)

View file

@ -1,190 +0,0 @@
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f32"
"gonum.org/v1/gonum/internal/asm/f64"
)
// TODO(Kunde21): Merge these methods back into level2double/level2single when Sgemv assembly kernels are merged into f32.
// Dgemv computes
// y = alpha * A * x + beta * y if tA = blas.NoTrans
// y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func (Implementation) Dgemv(tA blas.Transpose, m, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int) {
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if lda < max(1, n) {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
// Set up indexes
lenX := m
lenY := n
if tA == blas.NoTrans {
lenX = n
lenY = m
}
// Quick return if possible
if m == 0 || n == 0 {
return
}
if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
panic(shortY)
}
if len(a) < lda*(m-1)+n {
panic(shortA)
}
// Quick return if possible
if alpha == 0 && beta == 1 {
return
}
if alpha == 0 {
// First form y = beta * y
if incY > 0 {
Implementation{}.Dscal(lenY, beta, y, incY)
} else {
Implementation{}.Dscal(lenY, beta, y, -incY)
}
return
}
// Form y = alpha * A * x + y
if tA == blas.NoTrans {
f64.GemvN(uintptr(m), uintptr(n), alpha, a, uintptr(lda), x, uintptr(incX), beta, y, uintptr(incY))
return
}
// Cases where a is transposed.
f64.GemvT(uintptr(m), uintptr(n), alpha, a, uintptr(lda), x, uintptr(incX), beta, y, uintptr(incY))
}
// Sgemv computes
// y = alpha * A * x + beta * y if tA = blas.NoTrans
// y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sgemv(tA blas.Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if lda < max(1, n) {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// Set up indexes
lenX := m
lenY := n
if tA == blas.NoTrans {
lenX = n
lenY = m
}
if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
panic(shortY)
}
if len(a) < lda*(m-1)+n {
panic(shortA)
}
// Quick return if possible.
if alpha == 0 && beta == 1 {
return
}
// First form y = beta * y
if incY > 0 {
Implementation{}.Sscal(lenY, beta, y, incY)
} else {
Implementation{}.Sscal(lenY, beta, y, -incY)
}
if alpha == 0 {
return
}
var kx, ky int
if incX < 0 {
kx = -(lenX - 1) * incX
}
if incY < 0 {
ky = -(lenY - 1) * incY
}
// Form y = alpha * A * x + y
if tA == blas.NoTrans {
if incX == 1 && incY == 1 {
for i := 0; i < m; i++ {
y[i] += alpha * f32.DotUnitary(a[lda*i:lda*i+n], x[:n])
}
return
}
iy := ky
for i := 0; i < m; i++ {
y[iy] += alpha * f32.DotInc(x, a[lda*i:lda*i+n], uintptr(n), uintptr(incX), 1, uintptr(kx), 0)
iy += incY
}
return
}
// Cases where a is transposed.
if incX == 1 && incY == 1 {
for i := 0; i < m; i++ {
tmp := alpha * x[i]
if tmp != 0 {
f32.AxpyUnitaryTo(y, tmp, a[lda*i:lda*i+n], y[:n])
}
}
return
}
ix := kx
for i := 0; i < m; i++ {
tmp := alpha * x[ix]
if tmp != 0 {
f32.AxpyInc(tmp, a[lda*i:lda*i+n], y, uintptr(n), 1, uintptr(incY), 0, uintptr(ky))
}
ix += incX
}
}

View file

@ -1,58 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate ./single_precision.bash
package gonum
import (
"math"
"gonum.org/v1/gonum/internal/math32"
)
type Implementation struct{}
// [SD]gemm behavior constants. These are kept here to keep them out of the
// way during single precision code genration.
const (
blockSize = 64 // b x b matrix
minParBlock = 4 // minimum number of blocks needed to go parallel
buffMul = 4 // how big is the buffer relative to the number of workers
)
// subMul is a common type shared by [SD]gemm.
type subMul struct {
i, j int // index of block
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a > b {
return b
}
return a
}
// blocks returns the number of divisions of the dimension length with the given
// block size.
func blocks(dim, bsize int) int {
return (dim + bsize - 1) / bsize
}
// dcabs1 returns |real(z)|+|imag(z)|.
func dcabs1(z complex128) float64 {
return math.Abs(real(z)) + math.Abs(imag(z))
}
// scabs1 returns |real(z)|+|imag(z)|.
func scabs1(z complex64) float32 {
return math32.Abs(real(z)) + math32.Abs(imag(z))
}

View file

@ -1,445 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/c128"
)
var _ blas.Complex128Level1 = Implementation{}
// Dzasum returns the sum of the absolute values of the elements of x
// \sum_i |Re(x[i])| + |Im(x[i])|
// Dzasum returns 0 if incX is negative.
func (Implementation) Dzasum(n int, x []complex128, incX int) float64 {
if n < 0 {
panic(nLT0)
}
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
var sum float64
if incX == 1 {
if len(x) < n {
panic(shortX)
}
for _, v := range x[:n] {
sum += dcabs1(v)
}
return sum
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
for i := 0; i < n; i++ {
v := x[i*incX]
sum += dcabs1(v)
}
return sum
}
// Dznrm2 computes the Euclidean norm of the complex vector x,
// ‖x‖_2 = sqrt(\sum_i x[i] * conj(x[i])).
// This function returns 0 if incX is negative.
func (Implementation) Dznrm2(n int, x []complex128, incX int) float64 {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
if n < 1 {
if n == 0 {
return 0
}
panic(nLT0)
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
var (
scale float64
ssq float64 = 1
)
if incX == 1 {
for _, v := range x[:n] {
re, im := math.Abs(real(v)), math.Abs(imag(v))
if re != 0 {
if re > scale {
ssq = 1 + ssq*(scale/re)*(scale/re)
scale = re
} else {
ssq += (re / scale) * (re / scale)
}
}
if im != 0 {
if im > scale {
ssq = 1 + ssq*(scale/im)*(scale/im)
scale = im
} else {
ssq += (im / scale) * (im / scale)
}
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(ssq)
}
for ix := 0; ix < n*incX; ix += incX {
re, im := math.Abs(real(x[ix])), math.Abs(imag(x[ix]))
if re != 0 {
if re > scale {
ssq = 1 + ssq*(scale/re)*(scale/re)
scale = re
} else {
ssq += (re / scale) * (re / scale)
}
}
if im != 0 {
if im > scale {
ssq = 1 + ssq*(scale/im)*(scale/im)
scale = im
} else {
ssq += (im / scale) * (im / scale)
}
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(ssq)
}
// Izamax returns the index of the first element of x having largest |Re(·)|+|Im(·)|.
// Izamax returns -1 if n is 0 or incX is negative.
func (Implementation) Izamax(n int, x []complex128, incX int) int {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
// Return invalid index.
return -1
}
if n < 1 {
if n == 0 {
// Return invalid index.
return -1
}
panic(nLT0)
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
idx := 0
max := dcabs1(x[0])
if incX == 1 {
for i, v := range x[1:n] {
absV := dcabs1(v)
if absV > max {
max = absV
idx = i + 1
}
}
return idx
}
ix := incX
for i := 1; i < n; i++ {
absV := dcabs1(x[ix])
if absV > max {
max = absV
idx = i
}
ix += incX
}
return idx
}
// Zaxpy adds alpha times x to y:
// y[i] += alpha * x[i] for all i
func (Implementation) Zaxpy(n int, alpha complex128, x []complex128, incX int, y []complex128, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if alpha == 0 {
return
}
if incX == 1 && incY == 1 {
c128.AxpyUnitary(alpha, x[:n], y[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (1 - n) * incX
}
if incY < 0 {
iy = (1 - n) * incY
}
c128.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Zcopy copies the vector x to vector y.
func (Implementation) Zcopy(n int, x []complex128, incX int, y []complex128, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if incX == 1 && incY == 1 {
copy(y[:n], x[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
y[iy] = x[ix]
ix += incX
iy += incY
}
}
// Zdotc computes the dot product
// x^H · y
// of two complex vectors x and y.
func (Implementation) Zdotc(n int, x []complex128, incX int, y []complex128, incY int) complex128 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return c128.DotcUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || (n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || (n-1)*incY >= len(y) {
panic(shortY)
}
return c128.DotcInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Zdotu computes the dot product
// x^T · y
// of two complex vectors x and y.
func (Implementation) Zdotu(n int, x []complex128, incX int, y []complex128, incY int) complex128 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return c128.DotuUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || (n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || (n-1)*incY >= len(y) {
panic(shortY)
}
return c128.DotuInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Zdscal scales the vector x by a real scalar alpha.
// Zdscal has no effect if incX < 0.
func (Implementation) Zdscal(n int, alpha float64, x []complex128, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
x = x[:n]
for i, v := range x {
x[i] = complex(alpha*real(v), alpha*imag(v))
}
return
}
for ix := 0; ix < n*incX; ix += incX {
v := x[ix]
x[ix] = complex(alpha*real(v), alpha*imag(v))
}
}
// Zscal scales the vector x by a complex scalar alpha.
// Zscal has no effect if incX < 0.
func (Implementation) Zscal(n int, alpha complex128, x []complex128, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
c128.ScalUnitary(alpha, x[:n])
return
}
c128.ScalInc(alpha, x, uintptr(n), uintptr(incX))
}
// Zswap exchanges the elements of two complex vectors x and y.
func (Implementation) Zswap(n int, x []complex128, incX int, y []complex128, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if incX == 1 && incY == 1 {
x = x[:n]
for i, v := range x {
x[i], y[i] = y[i], v
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
x[ix], y[iy] = y[iy], x[ix]
ix += incX
iy += incY
}
}

View file

@ -1,467 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
math "gonum.org/v1/gonum/internal/math32"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/c64"
)
var _ blas.Complex64Level1 = Implementation{}
// Scasum returns the sum of the absolute values of the elements of x
// \sum_i |Re(x[i])| + |Im(x[i])|
// Scasum returns 0 if incX is negative.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Scasum(n int, x []complex64, incX int) float32 {
if n < 0 {
panic(nLT0)
}
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
var sum float32
if incX == 1 {
if len(x) < n {
panic(shortX)
}
for _, v := range x[:n] {
sum += scabs1(v)
}
return sum
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
for i := 0; i < n; i++ {
v := x[i*incX]
sum += scabs1(v)
}
return sum
}
// Scnrm2 computes the Euclidean norm of the complex vector x,
// ‖x‖_2 = sqrt(\sum_i x[i] * conj(x[i])).
// This function returns 0 if incX is negative.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Scnrm2(n int, x []complex64, incX int) float32 {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
if n < 1 {
if n == 0 {
return 0
}
panic(nLT0)
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
var (
scale float32
ssq float32 = 1
)
if incX == 1 {
for _, v := range x[:n] {
re, im := math.Abs(real(v)), math.Abs(imag(v))
if re != 0 {
if re > scale {
ssq = 1 + ssq*(scale/re)*(scale/re)
scale = re
} else {
ssq += (re / scale) * (re / scale)
}
}
if im != 0 {
if im > scale {
ssq = 1 + ssq*(scale/im)*(scale/im)
scale = im
} else {
ssq += (im / scale) * (im / scale)
}
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(ssq)
}
for ix := 0; ix < n*incX; ix += incX {
re, im := math.Abs(real(x[ix])), math.Abs(imag(x[ix]))
if re != 0 {
if re > scale {
ssq = 1 + ssq*(scale/re)*(scale/re)
scale = re
} else {
ssq += (re / scale) * (re / scale)
}
}
if im != 0 {
if im > scale {
ssq = 1 + ssq*(scale/im)*(scale/im)
scale = im
} else {
ssq += (im / scale) * (im / scale)
}
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(ssq)
}
// Icamax returns the index of the first element of x having largest |Re(·)|+|Im(·)|.
// Icamax returns -1 if n is 0 or incX is negative.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Icamax(n int, x []complex64, incX int) int {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
// Return invalid index.
return -1
}
if n < 1 {
if n == 0 {
// Return invalid index.
return -1
}
panic(nLT0)
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
idx := 0
max := scabs1(x[0])
if incX == 1 {
for i, v := range x[1:n] {
absV := scabs1(v)
if absV > max {
max = absV
idx = i + 1
}
}
return idx
}
ix := incX
for i := 1; i < n; i++ {
absV := scabs1(x[ix])
if absV > max {
max = absV
idx = i
}
ix += incX
}
return idx
}
// Caxpy adds alpha times x to y:
// y[i] += alpha * x[i] for all i
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Caxpy(n int, alpha complex64, x []complex64, incX int, y []complex64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if alpha == 0 {
return
}
if incX == 1 && incY == 1 {
c64.AxpyUnitary(alpha, x[:n], y[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (1 - n) * incX
}
if incY < 0 {
iy = (1 - n) * incY
}
c64.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Ccopy copies the vector x to vector y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Ccopy(n int, x []complex64, incX int, y []complex64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if incX == 1 && incY == 1 {
copy(y[:n], x[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
y[iy] = x[ix]
ix += incX
iy += incY
}
}
// Cdotc computes the dot product
// x^H · y
// of two complex vectors x and y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cdotc(n int, x []complex64, incX int, y []complex64, incY int) complex64 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return c64.DotcUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || (n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || (n-1)*incY >= len(y) {
panic(shortY)
}
return c64.DotcInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Cdotu computes the dot product
// x^T · y
// of two complex vectors x and y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cdotu(n int, x []complex64, incX int, y []complex64, incY int) complex64 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return c64.DotuUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || (n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || (n-1)*incY >= len(y) {
panic(shortY)
}
return c64.DotuInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Csscal scales the vector x by a real scalar alpha.
// Csscal has no effect if incX < 0.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Csscal(n int, alpha float32, x []complex64, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
x = x[:n]
for i, v := range x {
x[i] = complex(alpha*real(v), alpha*imag(v))
}
return
}
for ix := 0; ix < n*incX; ix += incX {
v := x[ix]
x[ix] = complex(alpha*real(v), alpha*imag(v))
}
}
// Cscal scales the vector x by a complex scalar alpha.
// Cscal has no effect if incX < 0.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cscal(n int, alpha complex64, x []complex64, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
c64.ScalUnitary(alpha, x[:n])
return
}
c64.ScalInc(alpha, x, uintptr(n), uintptr(incX))
}
// Cswap exchanges the elements of two complex vectors x and y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cswap(n int, x []complex64, incX int, y []complex64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if incX == 1 && incY == 1 {
x = x[:n]
for i, v := range x {
x[i], y[i] = y[i], v
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
x[ix], y[iy] = y[iy], x[ix]
ix += incX
iy += incY
}
}

View file

@ -1,644 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
math "gonum.org/v1/gonum/internal/math32"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f32"
)
var _ blas.Float32Level1 = Implementation{}
// Snrm2 computes the Euclidean norm of a vector,
// sqrt(\sum_i x[i] * x[i]).
// This function returns 0 if incX is negative.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Snrm2(n int, x []float32, incX int) float32 {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
if n < 2 {
if n == 1 {
return math.Abs(x[0])
}
if n == 0 {
return 0
}
panic(nLT0)
}
var (
scale float32 = 0
sumSquares float32 = 1
)
if incX == 1 {
x = x[:n]
for _, v := range x {
if v == 0 {
continue
}
absxi := math.Abs(v)
if math.IsNaN(absxi) {
return math.NaN()
}
if scale < absxi {
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
scale = absxi
} else {
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(sumSquares)
}
for ix := 0; ix < n*incX; ix += incX {
val := x[ix]
if val == 0 {
continue
}
absxi := math.Abs(val)
if math.IsNaN(absxi) {
return math.NaN()
}
if scale < absxi {
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
scale = absxi
} else {
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(sumSquares)
}
// Sasum computes the sum of the absolute values of the elements of x.
// \sum_i |x[i]|
// Sasum returns 0 if incX is negative.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sasum(n int, x []float32, incX int) float32 {
var sum float32
if n < 0 {
panic(nLT0)
}
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
if incX == 1 {
x = x[:n]
for _, v := range x {
sum += math.Abs(v)
}
return sum
}
for i := 0; i < n; i++ {
sum += math.Abs(x[i*incX])
}
return sum
}
// Isamax returns the index of an element of x with the largest absolute value.
// If there are multiple such indices the earliest is returned.
// Isamax returns -1 if n == 0.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Isamax(n int, x []float32, incX int) int {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return -1
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
if n < 2 {
if n == 1 {
return 0
}
if n == 0 {
return -1 // Netlib returns invalid index when n == 0.
}
panic(nLT0)
}
idx := 0
max := math.Abs(x[0])
if incX == 1 {
for i, v := range x[:n] {
absV := math.Abs(v)
if absV > max {
max = absV
idx = i
}
}
return idx
}
ix := incX
for i := 1; i < n; i++ {
v := x[ix]
absV := math.Abs(v)
if absV > max {
max = absV
idx = i
}
ix += incX
}
return idx
}
// Sswap exchanges the elements of two vectors.
// x[i], y[i] = y[i], x[i] for all i
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sswap(n int, x []float32, incX int, y []float32, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if incX == 1 && incY == 1 {
x = x[:n]
for i, v := range x {
x[i], y[i] = y[i], v
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
x[ix], y[iy] = y[iy], x[ix]
ix += incX
iy += incY
}
}
// Scopy copies the elements of x into the elements of y.
// y[i] = x[i] for all i
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Scopy(n int, x []float32, incX int, y []float32, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if incX == 1 && incY == 1 {
copy(y[:n], x[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
y[iy] = x[ix]
ix += incX
iy += incY
}
}
// Saxpy adds alpha times x to y
// y[i] += alpha * x[i] for all i
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Saxpy(n int, alpha float32, x []float32, incX int, y []float32, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if alpha == 0 {
return
}
if incX == 1 && incY == 1 {
f32.AxpyUnitary(alpha, x[:n], y[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
f32.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Srotg computes the plane rotation
// _ _ _ _ _ _
// | c s | | a | | r |
// | -s c | * | b | = | 0 |
// ‾ ‾ ‾ ‾ ‾ ‾
// where
// r = ±√(a^2 + b^2)
// c = a/r, the cosine of the plane rotation
// s = b/r, the sine of the plane rotation
//
// NOTE: There is a discrepancy between the reference implementation and the BLAS
// technical manual regarding the sign for r when a or b are zero.
// Srotg agrees with the definition in the manual and other
// common BLAS implementations.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srotg(a, b float32) (c, s, r, z float32) {
if b == 0 && a == 0 {
return 1, 0, a, 0
}
absA := math.Abs(a)
absB := math.Abs(b)
aGTb := absA > absB
r = math.Hypot(a, b)
if aGTb {
r = math.Copysign(r, a)
} else {
r = math.Copysign(r, b)
}
c = a / r
s = b / r
if aGTb {
z = s
} else if c != 0 { // r == 0 case handled above
z = 1 / c
} else {
z = 1
}
return
}
// Srotmg computes the modified Givens rotation. See
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
// for more details.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srotmg(d1, d2, x1, y1 float32) (p blas.SrotmParams, rd1, rd2, rx1 float32) {
// The implementation of Drotmg used here is taken from Hopkins 1997
// Appendix A: https://doi.org/10.1145/289251.289253
// with the exception of the gam constants below.
const (
gam = 4096.0
gamsq = gam * gam
rgamsq = 1.0 / gamsq
)
if d1 < 0 {
p.Flag = blas.Rescaling // Error state.
return p, 0, 0, 0
}
if d2 == 0 || y1 == 0 {
p.Flag = blas.Identity
return p, d1, d2, x1
}
var h11, h12, h21, h22 float32
if (d1 == 0 || x1 == 0) && d2 > 0 {
p.Flag = blas.Diagonal
h12 = 1
h21 = -1
x1 = y1
d1, d2 = d2, d1
} else {
p2 := d2 * y1
p1 := d1 * x1
q2 := p2 * y1
q1 := p1 * x1
if math.Abs(q1) > math.Abs(q2) {
p.Flag = blas.OffDiagonal
h11 = 1
h22 = 1
h21 = -y1 / x1
h12 = p2 / p1
u := 1 - h12*h21
if u <= 0 {
p.Flag = blas.Rescaling // Error state.
return p, 0, 0, 0
}
d1 /= u
d2 /= u
x1 *= u
} else {
if q2 < 0 {
p.Flag = blas.Rescaling // Error state.
return p, 0, 0, 0
}
p.Flag = blas.Diagonal
h21 = -1
h12 = 1
h11 = p1 / p2
h22 = x1 / y1
u := 1 + h11*h22
d1, d2 = d2/u, d1/u
x1 = y1 * u
}
}
for d1 <= rgamsq && d1 != 0 {
p.Flag = blas.Rescaling
d1 = (d1 * gam) * gam
x1 /= gam
h11 /= gam
h12 /= gam
}
for d1 > gamsq {
p.Flag = blas.Rescaling
d1 = (d1 / gam) / gam
x1 *= gam
h11 *= gam
h12 *= gam
}
for math.Abs(d2) <= rgamsq && d2 != 0 {
p.Flag = blas.Rescaling
d2 = (d2 * gam) * gam
h21 /= gam
h22 /= gam
}
for math.Abs(d2) > gamsq {
p.Flag = blas.Rescaling
d2 = (d2 / gam) / gam
h21 *= gam
h22 *= gam
}
switch p.Flag {
case blas.Diagonal:
p.H = [4]float32{0: h11, 3: h22}
case blas.OffDiagonal:
p.H = [4]float32{1: h21, 2: h12}
case blas.Rescaling:
p.H = [4]float32{h11, h21, h12, h22}
default:
panic(badFlag)
}
return p, d1, d2, x1
}
// Srot applies a plane transformation.
// x[i] = c * x[i] + s * y[i]
// y[i] = c * y[i] - s * x[i]
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srot(n int, x []float32, incX int, y []float32, incY int, c float32, s float32) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = c*vx+s*vy, c*vy-s*vx
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = c*vx+s*vy, c*vy-s*vx
ix += incX
iy += incY
}
}
// Srotm applies the modified Givens rotation to the 2×n matrix.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srotm(n int, x []float32, incX int, y []float32, incY int, p blas.SrotmParams) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if p.Flag == blas.Identity {
return
}
switch p.Flag {
case blas.Rescaling:
h11 := p.H[0]
h12 := p.H[2]
h21 := p.H[1]
h22 := p.H[3]
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = vx*h11+vy*h12, vx*h21+vy*h22
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = vx*h11+vy*h12, vx*h21+vy*h22
ix += incX
iy += incY
}
case blas.OffDiagonal:
h12 := p.H[2]
h21 := p.H[1]
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = vx+vy*h12, vx*h21+vy
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = vx+vy*h12, vx*h21+vy
ix += incX
iy += incY
}
case blas.Diagonal:
h11 := p.H[0]
h22 := p.H[3]
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = vx*h11+vy, -vx+vy*h22
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = vx*h11+vy, -vx+vy*h22
ix += incX
iy += incY
}
}
}
// Sscal scales x by alpha.
// x[i] *= alpha
// Sscal has no effect if incX < 0.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sscal(n int, alpha float32, x []float32, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
f32.ScalUnitary(alpha, x[:n])
return
}
f32.ScalInc(alpha, x, uintptr(n), uintptr(incX))
}

View file

@ -1,53 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/internal/asm/f32"
)
// Dsdot computes the dot product of the two vectors
// \sum_i x[i]*y[i]
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Dsdot(n int, x []float32, incX int, y []float32, incY int) float64 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return f32.DdotUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
panic(shortY)
}
return f32.DdotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}

View file

@ -1,53 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/internal/asm/f32"
)
// Sdot computes the dot product of the two vectors
// \sum_i x[i]*y[i]
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sdot(n int, x []float32, incX int, y []float32, incY int) float32 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return f32.DotUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
panic(shortY)
}
return f32.DotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}

View file

@ -1,53 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/internal/asm/f32"
)
// Sdsdot computes the dot product of the two vectors plus a constant
// alpha + \sum_i x[i]*y[i]
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sdsdot(n int, alpha float32, x []float32, incX int, y []float32, incY int) float32 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return alpha + float32(f32.DdotUnitary(x[:n], y[:n]))
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
panic(shortY)
}
return alpha + float32(f32.DdotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy)))
}

View file

@ -1,620 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f64"
)
var _ blas.Float64Level1 = Implementation{}
// Dnrm2 computes the Euclidean norm of a vector,
// sqrt(\sum_i x[i] * x[i]).
// This function returns 0 if incX is negative.
func (Implementation) Dnrm2(n int, x []float64, incX int) float64 {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
if n < 2 {
if n == 1 {
return math.Abs(x[0])
}
if n == 0 {
return 0
}
panic(nLT0)
}
var (
scale float64 = 0
sumSquares float64 = 1
)
if incX == 1 {
x = x[:n]
for _, v := range x {
if v == 0 {
continue
}
absxi := math.Abs(v)
if math.IsNaN(absxi) {
return math.NaN()
}
if scale < absxi {
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
scale = absxi
} else {
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(sumSquares)
}
for ix := 0; ix < n*incX; ix += incX {
val := x[ix]
if val == 0 {
continue
}
absxi := math.Abs(val)
if math.IsNaN(absxi) {
return math.NaN()
}
if scale < absxi {
sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi)
scale = absxi
} else {
sumSquares = sumSquares + (absxi/scale)*(absxi/scale)
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(sumSquares)
}
// Dasum computes the sum of the absolute values of the elements of x.
// \sum_i |x[i]|
// Dasum returns 0 if incX is negative.
func (Implementation) Dasum(n int, x []float64, incX int) float64 {
var sum float64
if n < 0 {
panic(nLT0)
}
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
if incX == 1 {
x = x[:n]
for _, v := range x {
sum += math.Abs(v)
}
return sum
}
for i := 0; i < n; i++ {
sum += math.Abs(x[i*incX])
}
return sum
}
// Idamax returns the index of an element of x with the largest absolute value.
// If there are multiple such indices the earliest is returned.
// Idamax returns -1 if n == 0.
func (Implementation) Idamax(n int, x []float64, incX int) int {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return -1
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
if n < 2 {
if n == 1 {
return 0
}
if n == 0 {
return -1 // Netlib returns invalid index when n == 0.
}
panic(nLT0)
}
idx := 0
max := math.Abs(x[0])
if incX == 1 {
for i, v := range x[:n] {
absV := math.Abs(v)
if absV > max {
max = absV
idx = i
}
}
return idx
}
ix := incX
for i := 1; i < n; i++ {
v := x[ix]
absV := math.Abs(v)
if absV > max {
max = absV
idx = i
}
ix += incX
}
return idx
}
// Dswap exchanges the elements of two vectors.
// x[i], y[i] = y[i], x[i] for all i
func (Implementation) Dswap(n int, x []float64, incX int, y []float64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if incX == 1 && incY == 1 {
x = x[:n]
for i, v := range x {
x[i], y[i] = y[i], v
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
x[ix], y[iy] = y[iy], x[ix]
ix += incX
iy += incY
}
}
// Dcopy copies the elements of x into the elements of y.
// y[i] = x[i] for all i
func (Implementation) Dcopy(n int, x []float64, incX int, y []float64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if incX == 1 && incY == 1 {
copy(y[:n], x[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
y[iy] = x[ix]
ix += incX
iy += incY
}
}
// Daxpy adds alpha times x to y
// y[i] += alpha * x[i] for all i
func (Implementation) Daxpy(n int, alpha float64, x []float64, incX int, y []float64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if alpha == 0 {
return
}
if incX == 1 && incY == 1 {
f64.AxpyUnitary(alpha, x[:n], y[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
f64.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Drotg computes the plane rotation
// _ _ _ _ _ _
// | c s | | a | | r |
// | -s c | * | b | = | 0 |
// ‾ ‾ ‾ ‾ ‾ ‾
// where
// r = ±√(a^2 + b^2)
// c = a/r, the cosine of the plane rotation
// s = b/r, the sine of the plane rotation
//
// NOTE: There is a discrepancy between the reference implementation and the BLAS
// technical manual regarding the sign for r when a or b are zero.
// Drotg agrees with the definition in the manual and other
// common BLAS implementations.
func (Implementation) Drotg(a, b float64) (c, s, r, z float64) {
if b == 0 && a == 0 {
return 1, 0, a, 0
}
absA := math.Abs(a)
absB := math.Abs(b)
aGTb := absA > absB
r = math.Hypot(a, b)
if aGTb {
r = math.Copysign(r, a)
} else {
r = math.Copysign(r, b)
}
c = a / r
s = b / r
if aGTb {
z = s
} else if c != 0 { // r == 0 case handled above
z = 1 / c
} else {
z = 1
}
return
}
// Drotmg computes the modified Givens rotation. See
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
// for more details.
func (Implementation) Drotmg(d1, d2, x1, y1 float64) (p blas.DrotmParams, rd1, rd2, rx1 float64) {
// The implementation of Drotmg used here is taken from Hopkins 1997
// Appendix A: https://doi.org/10.1145/289251.289253
// with the exception of the gam constants below.
const (
gam = 4096.0
gamsq = gam * gam
rgamsq = 1.0 / gamsq
)
if d1 < 0 {
p.Flag = blas.Rescaling // Error state.
return p, 0, 0, 0
}
if d2 == 0 || y1 == 0 {
p.Flag = blas.Identity
return p, d1, d2, x1
}
var h11, h12, h21, h22 float64
if (d1 == 0 || x1 == 0) && d2 > 0 {
p.Flag = blas.Diagonal
h12 = 1
h21 = -1
x1 = y1
d1, d2 = d2, d1
} else {
p2 := d2 * y1
p1 := d1 * x1
q2 := p2 * y1
q1 := p1 * x1
if math.Abs(q1) > math.Abs(q2) {
p.Flag = blas.OffDiagonal
h11 = 1
h22 = 1
h21 = -y1 / x1
h12 = p2 / p1
u := 1 - h12*h21
if u <= 0 {
p.Flag = blas.Rescaling // Error state.
return p, 0, 0, 0
}
d1 /= u
d2 /= u
x1 *= u
} else {
if q2 < 0 {
p.Flag = blas.Rescaling // Error state.
return p, 0, 0, 0
}
p.Flag = blas.Diagonal
h21 = -1
h12 = 1
h11 = p1 / p2
h22 = x1 / y1
u := 1 + h11*h22
d1, d2 = d2/u, d1/u
x1 = y1 * u
}
}
for d1 <= rgamsq && d1 != 0 {
p.Flag = blas.Rescaling
d1 = (d1 * gam) * gam
x1 /= gam
h11 /= gam
h12 /= gam
}
for d1 > gamsq {
p.Flag = blas.Rescaling
d1 = (d1 / gam) / gam
x1 *= gam
h11 *= gam
h12 *= gam
}
for math.Abs(d2) <= rgamsq && d2 != 0 {
p.Flag = blas.Rescaling
d2 = (d2 * gam) * gam
h21 /= gam
h22 /= gam
}
for math.Abs(d2) > gamsq {
p.Flag = blas.Rescaling
d2 = (d2 / gam) / gam
h21 *= gam
h22 *= gam
}
switch p.Flag {
case blas.Diagonal:
p.H = [4]float64{0: h11, 3: h22}
case blas.OffDiagonal:
p.H = [4]float64{1: h21, 2: h12}
case blas.Rescaling:
p.H = [4]float64{h11, h21, h12, h22}
default:
panic(badFlag)
}
return p, d1, d2, x1
}
// Drot applies a plane transformation.
// x[i] = c * x[i] + s * y[i]
// y[i] = c * y[i] - s * x[i]
func (Implementation) Drot(n int, x []float64, incX int, y []float64, incY int, c float64, s float64) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = c*vx+s*vy, c*vy-s*vx
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = c*vx+s*vy, c*vy-s*vx
ix += incX
iy += incY
}
}
// Drotm applies the modified Givens rotation to the 2×n matrix.
func (Implementation) Drotm(n int, x []float64, incX int, y []float64, incY int, p blas.DrotmParams) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
panic(shortX)
}
if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
panic(shortY)
}
if p.Flag == blas.Identity {
return
}
switch p.Flag {
case blas.Rescaling:
h11 := p.H[0]
h12 := p.H[2]
h21 := p.H[1]
h22 := p.H[3]
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = vx*h11+vy*h12, vx*h21+vy*h22
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = vx*h11+vy*h12, vx*h21+vy*h22
ix += incX
iy += incY
}
case blas.OffDiagonal:
h12 := p.H[2]
h21 := p.H[1]
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = vx+vy*h12, vx*h21+vy
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = vx+vy*h12, vx*h21+vy
ix += incX
iy += incY
}
case blas.Diagonal:
h11 := p.H[0]
h22 := p.H[3]
if incX == 1 && incY == 1 {
x = x[:n]
for i, vx := range x {
vy := y[i]
x[i], y[i] = vx*h11+vy, -vx+vy*h22
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
vx := x[ix]
vy := y[iy]
x[ix], y[iy] = vx*h11+vy, -vx+vy*h22
ix += incX
iy += incY
}
}
}
// Dscal scales x by alpha.
// x[i] *= alpha
// Dscal has no effect if incX < 0.
func (Implementation) Dscal(n int, alpha float64, x []float64, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
f64.ScalUnitary(alpha, x[:n])
return
}
f64.ScalInc(alpha, x, uintptr(n), uintptr(incX))
}

View file

@ -1,49 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/internal/asm/f64"
)
// Ddot computes the dot product of the two vectors
// \sum_i x[i]*y[i]
func (Implementation) Ddot(n int, x []float64, incX int, y []float64, incY int) float64 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return f64.DotUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || ix+(n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || iy+(n-1)*incY >= len(y) {
panic(shortY)
}
return f64.DotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,876 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f32"
)
var _ blas.Float32Level3 = Implementation{}
// Strsm solves one of the matrix equations
// A * X = alpha * B if tA == blas.NoTrans and side == blas.Left
// A^T * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
// X * A = alpha * B if tA == blas.NoTrans and side == blas.Right
// X * A^T = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and alpha is a
// scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in-place into X.
//
// No check is made that A is invertible.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
k := n
if s == blas.Left {
k = m
}
if lda < max(1, k) {
panic(badLdA)
}
if ldb < max(1, n) {
panic(badLdB)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(k-1)+k {
panic(shortA)
}
if len(b) < ldb*(m-1)+n {
panic(shortB)
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := m - 1; i >= 0; i-- {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f32.ScalUnitary(alpha, btmp)
}
for ka, va := range a[i*lda+i+1 : i*lda+m] {
if va != 0 {
k := ka + i + 1
f32.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
f32.ScalUnitary(tmp, btmp)
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f32.ScalUnitary(alpha, btmp)
}
for k, va := range a[i*lda : i*lda+i] {
if va != 0 {
f32.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
f32.ScalUnitary(tmp, btmp)
}
}
return
}
// Cases where a is transposed
if ul == blas.Upper {
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
f32.ScalUnitary(tmp, btmpk)
}
for ia, va := range a[k*lda+k+1 : k*lda+m] {
if va != 0 {
i := ia + k + 1
f32.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
}
}
if alpha != 1 {
f32.ScalUnitary(alpha, btmpk)
}
}
return
}
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
f32.ScalUnitary(tmp, btmpk)
}
for i, va := range a[k*lda : k*lda+k] {
if va != 0 {
f32.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
}
}
if alpha != 1 {
f32.ScalUnitary(alpha, btmpk)
}
}
return
}
// Cases where a is to the right of X.
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f32.ScalUnitary(alpha, btmp)
}
for k, vb := range btmp {
if vb == 0 {
continue
}
if nonUnit {
btmp[k] /= a[k*lda+k]
}
f32.AxpyUnitary(-btmp[k], a[k*lda+k+1:k*lda+n], btmp[k+1:n])
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f32.ScalUnitary(alpha, btmp)
}
for k := n - 1; k >= 0; k-- {
if btmp[k] == 0 {
continue
}
if nonUnit {
btmp[k] /= a[k*lda+k]
}
f32.AxpyUnitary(-btmp[k], a[k*lda:k*lda+k], btmp[:k])
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := n - 1; j >= 0; j-- {
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:])
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := 0; j < n; j++ {
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
}
// Ssymm performs one of the matrix-matrix operations
// C = alpha * A * B + beta * C if side == blas.Left
// C = alpha * B * A + beta * C if side == blas.Right
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha
// is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssymm(s blas.Side, ul blas.Uplo, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
if s != blas.Right && s != blas.Left {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
k := n
if s == blas.Left {
k = m
}
if lda < max(1, k) {
panic(badLdA)
}
if ldb < max(1, n) {
panic(badLdB)
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(k-1)+k {
panic(shortA)
}
if len(b) < ldb*(m-1)+n {
panic(shortB)
}
if len(c) < ldc*(m-1)+n {
panic(shortC)
}
// Quick return if possible.
if alpha == 0 && beta == 1 {
return
}
if alpha == 0 {
if beta == 0 {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := 0; j < n; j++ {
ctmp[j] *= beta
}
}
return
}
isUpper := ul == blas.Upper
if s == blas.Left {
for i := 0; i < m; i++ {
atmp := alpha * a[i*lda+i]
btmp := b[i*ldb : i*ldb+n]
ctmp := c[i*ldc : i*ldc+n]
for j, v := range btmp {
ctmp[j] *= beta
ctmp[j] += atmp * v
}
for k := 0; k < i; k++ {
var atmp float32
if isUpper {
atmp = a[k*lda+i]
} else {
atmp = a[i*lda+k]
}
atmp *= alpha
f32.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
}
for k := i + 1; k < m; k++ {
var atmp float32
if isUpper {
atmp = a[i*lda+k]
} else {
atmp = a[k*lda+i]
}
atmp *= alpha
f32.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
}
}
return
}
if isUpper {
for i := 0; i < m; i++ {
for j := n - 1; j >= 0; j-- {
tmp := alpha * b[i*ldb+j]
var tmp2 float32
atmp := a[j*lda+j+1 : j*lda+n]
btmp := b[i*ldb+j+1 : i*ldb+n]
ctmp := c[i*ldc+j+1 : i*ldc+n]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
return
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
tmp := alpha * b[i*ldb+j]
var tmp2 float32
atmp := a[j*lda : j*lda+j]
btmp := b[i*ldb : i*ldb+j]
ctmp := c[i*ldc : i*ldc+j]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
}
// Ssyrk performs one of the symmetric rank-k operations
// C = alpha * A * A^T + beta * C if tA == blas.NoTrans
// C = alpha * A^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
// where A is an n×k or k×n matrix, C is an n×n symmetric matrix, and alpha and
// beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, beta float32, c []float32, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
row, col := k, n
if tA == blas.NoTrans {
row, col = n, k
}
if lda < max(1, col) {
panic(badLdA)
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(row-1)+col {
panic(shortA)
}
if len(c) < ldc*(n-1)+n {
panic(shortC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
atmp := a[i*lda : i*lda+k]
if beta == 0 {
for jc := range ctmp {
j := jc + i
ctmp[jc] = alpha * f32.DotUnitary(atmp, a[j*lda:j*lda+k])
}
} else {
for jc, vc := range ctmp {
j := jc + i
ctmp[jc] = vc*beta + alpha*f32.DotUnitary(atmp, a[j*lda:j*lda+k])
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
atmp := a[i*lda : i*lda+k]
if beta == 0 {
for j := range ctmp {
ctmp[j] = alpha * f32.DotUnitary(a[j*lda:j*lda+k], atmp)
}
} else {
for j, vc := range ctmp {
ctmp[j] = vc*beta + alpha*f32.DotUnitary(a[j*lda:j*lda+k], atmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta == 0 {
for j := range ctmp {
ctmp[j] = 0
}
} else if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f32.AxpyUnitary(tmp, a[l*lda+i:l*lda+n], ctmp)
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f32.AxpyUnitary(tmp, a[l*lda:l*lda+i+1], ctmp)
}
}
}
}
// Ssyr2k performs one of the symmetric rank 2k operations
// C = alpha * A * B^T + alpha * B * A^T + beta * C if tA == blas.NoTrans
// C = alpha * A^T * B + alpha * B^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
// where A and B are n×k or k×n matrices, C is an n×n symmetric matrix, and
// alpha and beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
row, col := k, n
if tA == blas.NoTrans {
row, col = n, k
}
if lda < max(1, col) {
panic(badLdA)
}
if ldb < max(1, col) {
panic(badLdB)
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(row-1)+col {
panic(shortA)
}
if len(b) < ldb*(row-1)+col {
panic(shortB)
}
if len(c) < ldc*(n-1)+n {
panic(shortC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc+i : i*ldc+n]
for jc := range ctmp {
j := i + jc
var tmp1, tmp2 float32
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[jc] *= beta
ctmp[jc] += alpha * (tmp1 + tmp2)
}
}
return
}
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc : i*ldc+i+1]
for j := 0; j <= i; j++ {
var tmp1, tmp2 float32
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[j] *= beta
ctmp[j] += alpha * (tmp1 + tmp2)
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*ldb+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb+i : l*ldb+n]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda+i : l*lda+n] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*ldb+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb : l*ldb+i+1]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda : l*lda+i+1] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
}
// Strmm performs one of the matrix-matrix operations
// B = alpha * A * B if tA == blas.NoTrans and side == blas.Left
// B = alpha * A^T * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
// B = alpha * B * A if tA == blas.NoTrans and side == blas.Right
// B = alpha * B * A^T if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
k := n
if s == blas.Left {
k = m
}
if lda < max(1, k) {
panic(badLdA)
}
if ldb < max(1, n) {
panic(badLdB)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(k-1)+k {
panic(shortA)
}
if len(b) < ldb*(m-1)+n {
panic(shortB)
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
f32.ScalUnitary(tmp, btmp)
for ka, va := range a[i*lda+i+1 : i*lda+m] {
k := ka + i + 1
if va != 0 {
f32.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
for i := m - 1; i >= 0; i-- {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
f32.ScalUnitary(tmp, btmp)
for k, va := range a[i*lda : i*lda+i] {
if va != 0 {
f32.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
for ia, va := range a[k*lda+k+1 : k*lda+m] {
i := ia + k + 1
btmp := b[i*ldb : i*ldb+n]
if va != 0 {
f32.AxpyUnitary(alpha*va, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
f32.ScalUnitary(tmp, btmpk)
}
}
return
}
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
for i, va := range a[k*lda : k*lda+k] {
btmp := b[i*ldb : i*ldb+n]
if va != 0 {
f32.AxpyUnitary(alpha*va, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
f32.ScalUnitary(tmp, btmpk)
}
}
return
}
// Cases where a is on the right
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := n - 1; k >= 0; k-- {
tmp := alpha * btmp[k]
if tmp == 0 {
continue
}
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
f32.AxpyUnitary(tmp, a[k*lda+k+1:k*lda+n], btmp[k+1:n])
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := 0; k < n; k++ {
tmp := alpha * btmp[k]
if tmp == 0 {
continue
}
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
f32.AxpyUnitary(tmp, a[k*lda:k*lda+k], btmp[:k])
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j, vb := range btmp {
tmp := vb
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:n])
btmp[j] = alpha * tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := n - 1; j >= 0; j-- {
tmp := btmp[j]
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f32.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
btmp[j] = alpha * tmp
}
}
}

View file

@ -1,864 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f64"
)
var _ blas.Float64Level3 = Implementation{}
// Dtrsm solves one of the matrix equations
// A * X = alpha * B if tA == blas.NoTrans and side == blas.Left
// A^T * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
// X * A = alpha * B if tA == blas.NoTrans and side == blas.Right
// X * A^T = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and alpha is a
// scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in-place into X.
//
// No check is made that A is invertible.
func (Implementation) Dtrsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
k := n
if s == blas.Left {
k = m
}
if lda < max(1, k) {
panic(badLdA)
}
if ldb < max(1, n) {
panic(badLdB)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(k-1)+k {
panic(shortA)
}
if len(b) < ldb*(m-1)+n {
panic(shortB)
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := m - 1; i >= 0; i-- {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f64.ScalUnitary(alpha, btmp)
}
for ka, va := range a[i*lda+i+1 : i*lda+m] {
if va != 0 {
k := ka + i + 1
f64.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
f64.ScalUnitary(tmp, btmp)
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f64.ScalUnitary(alpha, btmp)
}
for k, va := range a[i*lda : i*lda+i] {
if va != 0 {
f64.AxpyUnitary(-va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
f64.ScalUnitary(tmp, btmp)
}
}
return
}
// Cases where a is transposed
if ul == blas.Upper {
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
f64.ScalUnitary(tmp, btmpk)
}
for ia, va := range a[k*lda+k+1 : k*lda+m] {
if va != 0 {
i := ia + k + 1
f64.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
}
}
if alpha != 1 {
f64.ScalUnitary(alpha, btmpk)
}
}
return
}
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
f64.ScalUnitary(tmp, btmpk)
}
for i, va := range a[k*lda : k*lda+k] {
if va != 0 {
f64.AxpyUnitary(-va, btmpk, b[i*ldb:i*ldb+n])
}
}
if alpha != 1 {
f64.ScalUnitary(alpha, btmpk)
}
}
return
}
// Cases where a is to the right of X.
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f64.ScalUnitary(alpha, btmp)
}
for k, vb := range btmp {
if vb == 0 {
continue
}
if nonUnit {
btmp[k] /= a[k*lda+k]
}
f64.AxpyUnitary(-btmp[k], a[k*lda+k+1:k*lda+n], btmp[k+1:n])
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
f64.ScalUnitary(alpha, btmp)
}
for k := n - 1; k >= 0; k-- {
if btmp[k] == 0 {
continue
}
if nonUnit {
btmp[k] /= a[k*lda+k]
}
f64.AxpyUnitary(-btmp[k], a[k*lda:k*lda+k], btmp[:k])
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := n - 1; j >= 0; j-- {
tmp := alpha*btmp[j] - f64.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:])
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := 0; j < n; j++ {
tmp := alpha*btmp[j] - f64.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
}
// Dsymm performs one of the matrix-matrix operations
// C = alpha * A * B + beta * C if side == blas.Left
// C = alpha * B * A + beta * C if side == blas.Right
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha
// is a scalar.
func (Implementation) Dsymm(s blas.Side, ul blas.Uplo, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
if s != blas.Right && s != blas.Left {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
k := n
if s == blas.Left {
k = m
}
if lda < max(1, k) {
panic(badLdA)
}
if ldb < max(1, n) {
panic(badLdB)
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(k-1)+k {
panic(shortA)
}
if len(b) < ldb*(m-1)+n {
panic(shortB)
}
if len(c) < ldc*(m-1)+n {
panic(shortC)
}
// Quick return if possible.
if alpha == 0 && beta == 1 {
return
}
if alpha == 0 {
if beta == 0 {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := 0; j < n; j++ {
ctmp[j] *= beta
}
}
return
}
isUpper := ul == blas.Upper
if s == blas.Left {
for i := 0; i < m; i++ {
atmp := alpha * a[i*lda+i]
btmp := b[i*ldb : i*ldb+n]
ctmp := c[i*ldc : i*ldc+n]
for j, v := range btmp {
ctmp[j] *= beta
ctmp[j] += atmp * v
}
for k := 0; k < i; k++ {
var atmp float64
if isUpper {
atmp = a[k*lda+i]
} else {
atmp = a[i*lda+k]
}
atmp *= alpha
f64.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
}
for k := i + 1; k < m; k++ {
var atmp float64
if isUpper {
atmp = a[i*lda+k]
} else {
atmp = a[k*lda+i]
}
atmp *= alpha
f64.AxpyUnitary(atmp, b[k*ldb:k*ldb+n], ctmp)
}
}
return
}
if isUpper {
for i := 0; i < m; i++ {
for j := n - 1; j >= 0; j-- {
tmp := alpha * b[i*ldb+j]
var tmp2 float64
atmp := a[j*lda+j+1 : j*lda+n]
btmp := b[i*ldb+j+1 : i*ldb+n]
ctmp := c[i*ldc+j+1 : i*ldc+n]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
return
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
tmp := alpha * b[i*ldb+j]
var tmp2 float64
atmp := a[j*lda : j*lda+j]
btmp := b[i*ldb : i*ldb+j]
ctmp := c[i*ldc : i*ldc+j]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
}
// Dsyrk performs one of the symmetric rank-k operations
// C = alpha * A * A^T + beta * C if tA == blas.NoTrans
// C = alpha * A^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
// where A is an n×k or k×n matrix, C is an n×n symmetric matrix, and alpha and
// beta are scalars.
func (Implementation) Dsyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, beta float64, c []float64, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
row, col := k, n
if tA == blas.NoTrans {
row, col = n, k
}
if lda < max(1, col) {
panic(badLdA)
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(row-1)+col {
panic(shortA)
}
if len(c) < ldc*(n-1)+n {
panic(shortC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
atmp := a[i*lda : i*lda+k]
if beta == 0 {
for jc := range ctmp {
j := jc + i
ctmp[jc] = alpha * f64.DotUnitary(atmp, a[j*lda:j*lda+k])
}
} else {
for jc, vc := range ctmp {
j := jc + i
ctmp[jc] = vc*beta + alpha*f64.DotUnitary(atmp, a[j*lda:j*lda+k])
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
atmp := a[i*lda : i*lda+k]
if beta == 0 {
for j := range ctmp {
ctmp[j] = alpha * f64.DotUnitary(a[j*lda:j*lda+k], atmp)
}
} else {
for j, vc := range ctmp {
ctmp[j] = vc*beta + alpha*f64.DotUnitary(a[j*lda:j*lda+k], atmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta == 0 {
for j := range ctmp {
ctmp[j] = 0
}
} else if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f64.AxpyUnitary(tmp, a[l*lda+i:l*lda+n], ctmp)
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f64.AxpyUnitary(tmp, a[l*lda:l*lda+i+1], ctmp)
}
}
}
}
// Dsyr2k performs one of the symmetric rank 2k operations
// C = alpha * A * B^T + alpha * B * A^T + beta * C if tA == blas.NoTrans
// C = alpha * A^T * B + alpha * B^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
// where A and B are n×k or k×n matrices, C is an n×n symmetric matrix, and
// alpha and beta are scalars.
func (Implementation) Dsyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
row, col := k, n
if tA == blas.NoTrans {
row, col = n, k
}
if lda < max(1, col) {
panic(badLdA)
}
if ldb < max(1, col) {
panic(badLdB)
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(row-1)+col {
panic(shortA)
}
if len(b) < ldb*(row-1)+col {
panic(shortB)
}
if len(c) < ldc*(n-1)+n {
panic(shortC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc+i : i*ldc+n]
for jc := range ctmp {
j := i + jc
var tmp1, tmp2 float64
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[jc] *= beta
ctmp[jc] += alpha * (tmp1 + tmp2)
}
}
return
}
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc : i*ldc+i+1]
for j := 0; j <= i; j++ {
var tmp1, tmp2 float64
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[j] *= beta
ctmp[j] += alpha * (tmp1 + tmp2)
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*ldb+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb+i : l*ldb+n]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda+i : l*lda+n] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*ldb+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb : l*ldb+i+1]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda : l*lda+i+1] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
}
// Dtrmm performs one of the matrix-matrix operations
// B = alpha * A * B if tA == blas.NoTrans and side == blas.Left
// B = alpha * A^T * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
// B = alpha * B * A if tA == blas.NoTrans and side == blas.Right
// B = alpha * B * A^T if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is a scalar.
func (Implementation) Dtrmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
k := n
if s == blas.Left {
k = m
}
if lda < max(1, k) {
panic(badLdA)
}
if ldb < max(1, n) {
panic(badLdB)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if len(a) < lda*(k-1)+k {
panic(shortA)
}
if len(b) < ldb*(m-1)+n {
panic(shortB)
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
f64.ScalUnitary(tmp, btmp)
for ka, va := range a[i*lda+i+1 : i*lda+m] {
k := ka + i + 1
if va != 0 {
f64.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
for i := m - 1; i >= 0; i-- {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
f64.ScalUnitary(tmp, btmp)
for k, va := range a[i*lda : i*lda+i] {
if va != 0 {
f64.AxpyUnitary(alpha*va, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
for ia, va := range a[k*lda+k+1 : k*lda+m] {
i := ia + k + 1
btmp := b[i*ldb : i*ldb+n]
if va != 0 {
f64.AxpyUnitary(alpha*va, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
f64.ScalUnitary(tmp, btmpk)
}
}
return
}
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
for i, va := range a[k*lda : k*lda+k] {
btmp := b[i*ldb : i*ldb+n]
if va != 0 {
f64.AxpyUnitary(alpha*va, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
f64.ScalUnitary(tmp, btmpk)
}
}
return
}
// Cases where a is on the right
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := n - 1; k >= 0; k-- {
tmp := alpha * btmp[k]
if tmp == 0 {
continue
}
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
f64.AxpyUnitary(tmp, a[k*lda+k+1:k*lda+n], btmp[k+1:n])
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := 0; k < n; k++ {
tmp := alpha * btmp[k]
if tmp == 0 {
continue
}
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
f64.AxpyUnitary(tmp, a[k*lda:k*lda+k], btmp[:k])
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j, vb := range btmp {
tmp := vb
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f64.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:n])
btmp[j] = alpha * tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := n - 1; j >= 0; j-- {
tmp := btmp[j]
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f64.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
btmp[j] = alpha * tmp
}
}
}

View file

@ -1,318 +0,0 @@
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"runtime"
"sync"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f32"
)
// Sgemm performs one of the matrix-matrix operations
// C = alpha * A * B + beta * C
// C = alpha * A^T * B + beta * C
// C = alpha * A * B^T + beta * C
// C = alpha * A^T * B^T + beta * C
// where A is an m×k or k×m dense matrix, B is an n×k or k×n dense matrix, C is
// an m×n matrix, and alpha and beta are scalars. tA and tB specify whether A or
// B are transposed.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sgemm(tA, tB blas.Transpose, m, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
switch tA {
default:
panic(badTranspose)
case blas.NoTrans, blas.Trans, blas.ConjTrans:
}
switch tB {
default:
panic(badTranspose)
case blas.NoTrans, blas.Trans, blas.ConjTrans:
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
aTrans := tA == blas.Trans || tA == blas.ConjTrans
if aTrans {
if lda < max(1, m) {
panic(badLdA)
}
} else {
if lda < max(1, k) {
panic(badLdA)
}
}
bTrans := tB == blas.Trans || tB == blas.ConjTrans
if bTrans {
if ldb < max(1, k) {
panic(badLdB)
}
} else {
if ldb < max(1, n) {
panic(badLdB)
}
}
if ldc < max(1, n) {
panic(badLdC)
}
// Quick return if possible.
if m == 0 || n == 0 {
return
}
// For zero matrix size the following slice length checks are trivially satisfied.
if aTrans {
if len(a) < (k-1)*lda+m {
panic(shortA)
}
} else {
if len(a) < (m-1)*lda+k {
panic(shortA)
}
}
if bTrans {
if len(b) < (n-1)*ldb+k {
panic(shortB)
}
} else {
if len(b) < (k-1)*ldb+n {
panic(shortB)
}
}
if len(c) < (m-1)*ldc+n {
panic(shortC)
}
// Quick return if possible.
if (alpha == 0 || k == 0) && beta == 1 {
return
}
// scale c
if beta != 1 {
if beta == 0 {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
} else {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
}
}
sgemmParallel(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
}
func sgemmParallel(aTrans, bTrans bool, m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
// dgemmParallel computes a parallel matrix multiplication by partitioning
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
// In all cases,
// A = [ A_11 A_12 ... A_1j
// A_21 A_22 ... A_2j
// ...
// A_i1 A_i2 ... A_ij]
//
// and same for B. All of the submatrix sizes are blockSize×blockSize except
// at the edges.
//
// In all cases, there is one dimension for each matrix along which
// C must be updated sequentially.
// Cij = \sum_k Aik Bki, (A * B)
// Cij = \sum_k Aki Bkj, (A^T * B)
// Cij = \sum_k Aik Bjk, (A * B^T)
// Cij = \sum_k Aki Bjk, (A^T * B^T)
//
// This code computes one {i, j} block sequentially along the k dimension,
// and computes all of the {i, j} blocks concurrently. This
// partitioning allows Cij to be updated in-place without race-conditions.
// Instead of launching a goroutine for each possible concurrent computation,
// a number of worker goroutines are created and channels are used to pass
// available and completed cases.
//
// http://alexkr.com/docs/matrixmult.pdf is a good reference on matrix-matrix
// multiplies, though this code does not copy matrices to attempt to eliminate
// cache misses.
maxKLen := k
parBlocks := blocks(m, blockSize) * blocks(n, blockSize)
if parBlocks < minParBlock {
// The matrix multiplication is small in the dimensions where it can be
// computed concurrently. Just do it in serial.
sgemmSerial(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
}
nWorkers := runtime.GOMAXPROCS(0)
if parBlocks < nWorkers {
nWorkers = parBlocks
}
// There is a tradeoff between the workers having to wait for work
// and a large buffer making operations slow.
buf := buffMul * nWorkers
if buf > parBlocks {
buf = parBlocks
}
sendChan := make(chan subMul, buf)
// Launch workers. A worker receives an {i, j} submatrix of c, and computes
// A_ik B_ki (or the transposed version) storing the result in c_ij. When the
// channel is finally closed, it signals to the waitgroup that it has finished
// computing.
var wg sync.WaitGroup
for i := 0; i < nWorkers; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for sub := range sendChan {
i := sub.i
j := sub.j
leni := blockSize
if i+leni > m {
leni = m - i
}
lenj := blockSize
if j+lenj > n {
lenj = n - j
}
cSub := sliceView32(c, ldc, i, j, leni, lenj)
// Compute A_ik B_kj for all k
for k := 0; k < maxKLen; k += blockSize {
lenk := blockSize
if k+lenk > maxKLen {
lenk = maxKLen - k
}
var aSub, bSub []float32
if aTrans {
aSub = sliceView32(a, lda, k, i, lenk, leni)
} else {
aSub = sliceView32(a, lda, i, k, leni, lenk)
}
if bTrans {
bSub = sliceView32(b, ldb, j, k, lenj, lenk)
} else {
bSub = sliceView32(b, ldb, k, j, lenk, lenj)
}
sgemmSerial(aTrans, bTrans, leni, lenj, lenk, aSub, lda, bSub, ldb, cSub, ldc, alpha)
}
}
}()
}
// Send out all of the {i, j} subblocks for computation.
for i := 0; i < m; i += blockSize {
for j := 0; j < n; j += blockSize {
sendChan <- subMul{
i: i,
j: j,
}
}
}
close(sendChan)
wg.Wait()
}
// sgemmSerial is serial matrix multiply
func sgemmSerial(aTrans, bTrans bool, m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
switch {
case !aTrans && !bTrans:
sgemmSerialNotNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case aTrans && !bTrans:
sgemmSerialTransNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case !aTrans && bTrans:
sgemmSerialNotTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
case aTrans && bTrans:
sgemmSerialTransTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
return
default:
panic("unreachable")
}
}
// sgemmSerial where neither a nor b are transposed
func sgemmSerialNotNot(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for l, v := range a[i*lda : i*lda+k] {
tmp := alpha * v
if tmp != 0 {
f32.AxpyUnitary(tmp, b[l*ldb:l*ldb+n], ctmp)
}
}
}
}
// sgemmSerial where neither a is transposed and b is not
func sgemmSerialTransNot(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for l := 0; l < k; l++ {
btmp := b[l*ldb : l*ldb+n]
for i, v := range a[l*lda : l*lda+m] {
tmp := alpha * v
if tmp != 0 {
ctmp := c[i*ldc : i*ldc+n]
f32.AxpyUnitary(tmp, btmp, ctmp)
}
}
}
}
// sgemmSerial where neither a is not transposed and b is
func sgemmSerialNotTrans(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for i := 0; i < m; i++ {
atmp := a[i*lda : i*lda+k]
ctmp := c[i*ldc : i*ldc+n]
for j := 0; j < n; j++ {
ctmp[j] += alpha * f32.DotUnitary(atmp, b[j*ldb:j*ldb+k])
}
}
}
// sgemmSerial where both are transposed
func sgemmSerialTransTrans(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
// This style is used instead of the literal [i*stride +j]) is used because
// approximately 5 times faster as of go 1.3.
for l := 0; l < k; l++ {
for i, v := range a[l*lda : l*lda+m] {
tmp := alpha * v
if tmp != 0 {
ctmp := c[i*ldc : i*ldc+n]
f32.AxpyInc(tmp, b[l:], ctmp, uintptr(n), uintptr(ldb), 1, 0, 0)
}
}
}
}
func sliceView32(a []float32, lda, i, j, r, c int) []float32 {
return a[i*lda+j : (i+r-1)*lda+j+c]
}

View file

@ -1,218 +0,0 @@
#!/usr/bin/env bash
# Copyright ©2015 The Gonum Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
WARNINGF32='//\
// Float32 implementations are autogenerated and not directly tested.\
'
WARNINGC64='//\
// Complex64 implementations are autogenerated and not directly tested.\
'
# Level1 routines.
echo Generating level1float32.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32.go
cat level1float64.go \
| gofmt -r 'blas.Float64Level1 -> blas.Float32Level1' \
\
| gofmt -r 'float64 -> float32' \
| gofmt -r 'blas.DrotmParams -> blas.SrotmParams' \
\
| gofmt -r 'f64.AxpyInc -> f32.AxpyInc' \
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
| gofmt -r 'f64.ScalInc -> f32.ScalInc' \
| gofmt -r 'f64.ScalUnitary -> f32.ScalUnitary' \
\
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
-e 's_^// D_// S_' \
-e "s_^\(func (Implementation) \)Id\(.*\)\$_$WARNINGF32\1Is\2_" \
-e 's_^// Id_// Is_' \
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
>> level1float32.go
echo Generating level1cmplx64.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1cmplx64.go
cat level1cmplx128.go \
| gofmt -r 'blas.Complex128Level1 -> blas.Complex64Level1' \
\
| gofmt -r 'float64 -> float32' \
| gofmt -r 'complex128 -> complex64' \
\
| gofmt -r 'c128.AxpyInc -> c64.AxpyInc' \
| gofmt -r 'c128.AxpyUnitary -> c64.AxpyUnitary' \
| gofmt -r 'c128.DotcInc -> c64.DotcInc' \
| gofmt -r 'c128.DotcUnitary -> c64.DotcUnitary' \
| gofmt -r 'c128.DotuInc -> c64.DotuInc' \
| gofmt -r 'c128.DotuUnitary -> c64.DotuUnitary' \
| gofmt -r 'c128.ScalInc -> c64.ScalInc' \
| gofmt -r 'c128.ScalUnitary -> c64.ScalUnitary' \
| gofmt -r 'dcabs1 -> scabs1' \
\
| sed -e "s_^\(func (Implementation) \)Zdot\(.*\)\$_$WARNINGC64\1Cdot\2_" \
-e 's_^// Zdot_// Cdot_' \
-e "s_^\(func (Implementation) \)Zdscal\(.*\)\$_$WARNINGC64\1Csscal\2_" \
-e 's_^// Zdscal_// Csscal_' \
-e "s_^\(func (Implementation) \)Z\(.*\)\$_$WARNINGC64\1C\2_" \
-e 's_^// Z_// C_' \
-e "s_^\(func (Implementation) \)Iz\(.*\)\$_$WARNINGC64\1Ic\2_" \
-e 's_^// Iz_// Ic_' \
-e "s_^\(func (Implementation) \)Dz\(.*\)\$_$WARNINGC64\1Sc\2_" \
-e 's_^// Dz_// Sc_' \
-e 's_"gonum.org/v1/gonum/internal/asm/c128"_"gonum.org/v1/gonum/internal/asm/c64"_' \
-e 's_"math"_math "gonum.org/v1/gonum/internal/math32"_' \
>> level1cmplx64.go
echo Generating level1float32_sdot.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32_sdot.go
cat level1float64_ddot.go \
| gofmt -r 'float64 -> float32' \
\
| gofmt -r 'f64.DotInc -> f32.DotInc' \
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
\
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
-e 's_^// D_// S_' \
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
>> level1float32_sdot.go
echo Generating level1float32_dsdot.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32_dsdot.go
cat level1float64_ddot.go \
| gofmt -r '[]float64 -> []float32' \
\
| gofmt -r 'f64.DotInc -> f32.DdotInc' \
| gofmt -r 'f64.DotUnitary -> f32.DdotUnitary' \
\
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1Ds\2_" \
-e 's_^// D_// Ds_' \
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
>> level1float32_dsdot.go
echo Generating level1float32_sdsdot.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level1float32_sdsdot.go
cat level1float64_ddot.go \
| gofmt -r 'float64 -> float32' \
\
| gofmt -r 'f64.DotInc(x, y, f(n), f(incX), f(incY), f(ix), f(iy)) -> alpha + float32(f32.DdotInc(x, y, f(n), f(incX), f(incY), f(ix), f(iy)))' \
| gofmt -r 'f64.DotUnitary(a, b) -> alpha + float32(f32.DdotUnitary(a, b))' \
\
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1Sds\2_" \
-e 's_^// D\(.*\)$_// Sds\1 plus a constant_' \
-e 's_\\sum_alpha + \\sum_' \
-e 's/n int/n int, alpha float32/' \
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
>> level1float32_sdsdot.go
# Level2 routines.
echo Generating level2float32.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level2float32.go
cat level2float64.go \
| gofmt -r 'blas.Float64Level2 -> blas.Float32Level2' \
\
| gofmt -r 'float64 -> float32' \
\
| gofmt -r 'f64.AxpyInc -> f32.AxpyInc' \
| gofmt -r 'f64.AxpyIncTo -> f32.AxpyIncTo' \
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
| gofmt -r 'f64.AxpyUnitaryTo -> f32.AxpyUnitaryTo' \
| gofmt -r 'f64.DotInc -> f32.DotInc' \
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
| gofmt -r 'f64.ScalInc -> f32.ScalInc' \
| gofmt -r 'f64.ScalUnitary -> f32.ScalUnitary' \
| gofmt -r 'f64.Ger -> f32.Ger' \
\
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
-e 's_^// D_// S_' \
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
>> level2float32.go
echo Generating level2cmplx64.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level2cmplx64.go
cat level2cmplx128.go \
| gofmt -r 'blas.Complex128Level2 -> blas.Complex64Level2' \
\
| gofmt -r 'complex128 -> complex64' \
| gofmt -r 'float64 -> float32' \
\
| gofmt -r 'c128.AxpyInc -> c64.AxpyInc' \
| gofmt -r 'c128.AxpyUnitary -> c64.AxpyUnitary' \
| gofmt -r 'c128.DotuInc -> c64.DotuInc' \
| gofmt -r 'c128.DotuUnitary -> c64.DotuUnitary' \
| gofmt -r 'c128.ScalInc -> c64.ScalInc' \
| gofmt -r 'c128.ScalUnitary -> c64.ScalUnitary' \
\
| sed -e "s_^\(func (Implementation) \)Z\(.*\)\$_$WARNINGC64\1C\2_" \
-e 's_^// Z_// C_' \
-e 's_"gonum.org/v1/gonum/internal/asm/c128"_"gonum.org/v1/gonum/internal/asm/c64"_' \
-e 's_"math/cmplx"_cmplx "gonum.org/v1/gonum/internal/cmplx64"_' \
>> level2cmplx64.go
# Level3 routines.
echo Generating level3float32.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level3float32.go
cat level3float64.go \
| gofmt -r 'blas.Float64Level3 -> blas.Float32Level3' \
\
| gofmt -r 'float64 -> float32' \
\
| gofmt -r 'f64.AxpyUnitaryTo -> f32.AxpyUnitaryTo' \
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
| gofmt -r 'f64.ScalUnitary -> f32.ScalUnitary' \
\
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
-e 's_^// D_// S_' \
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
>> level3float32.go
echo Generating sgemm.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > sgemm.go
cat dgemm.go \
| gofmt -r 'float64 -> float32' \
| gofmt -r 'sliceView64 -> sliceView32' \
\
| gofmt -r 'dgemmParallel -> sgemmParallel' \
| gofmt -r 'computeNumBlocks64 -> computeNumBlocks32' \
| gofmt -r 'dgemmSerial -> sgemmSerial' \
| gofmt -r 'dgemmSerialNotNot -> sgemmSerialNotNot' \
| gofmt -r 'dgemmSerialTransNot -> sgemmSerialTransNot' \
| gofmt -r 'dgemmSerialNotTrans -> sgemmSerialNotTrans' \
| gofmt -r 'dgemmSerialTransTrans -> sgemmSerialTransTrans' \
\
| gofmt -r 'f64.AxpyInc -> f32.AxpyInc' \
| gofmt -r 'f64.AxpyUnitary -> f32.AxpyUnitary' \
| gofmt -r 'f64.DotUnitary -> f32.DotUnitary' \
\
| sed -e "s_^\(func (Implementation) \)D\(.*\)\$_$WARNINGF32\1S\2_" \
-e 's_^// D_// S_' \
-e 's_^// d_// s_' \
-e 's_"gonum.org/v1/gonum/internal/asm/f64"_"gonum.org/v1/gonum/internal/asm/f32"_' \
>> sgemm.go
echo Generating level3cmplx64.go
echo -e '// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.\n' > level3cmplx64.go
cat level3cmplx128.go \
| gofmt -r 'blas.Complex128Level3 -> blas.Complex64Level3' \
\
| gofmt -r 'float64 -> float32' \
| gofmt -r 'complex128 -> complex64' \
\
| gofmt -r 'c128.ScalUnitary -> c64.ScalUnitary' \
| gofmt -r 'c128.DscalUnitary -> c64.SscalUnitary' \
| gofmt -r 'c128.DotcUnitary -> c64.DotcUnitary' \
| gofmt -r 'c128.AxpyUnitary -> c64.AxpyUnitary' \
| gofmt -r 'c128.DotuUnitary -> c64.DotuUnitary' \
\
| sed -e "s_^\(func (Implementation) \)Z\(.*\)\$_$WARNINGC64\1C\2_" \
-e 's_^// Z_// C_' \
-e 's_"gonum.org/v1/gonum/internal/asm/c128"_"gonum.org/v1/gonum/internal/asm/c64"_' \
-e 's_"math/cmplx"_cmplx "gonum.org/v1/gonum/internal/cmplx64"_' \
>> level3cmplx64.go

View file

@ -1,4 +0,0 @@
# Gonum floats [![GoDoc](https://godoc.org/gonum.org/v1/gonum/floats?status.svg)](https://godoc.org/gonum.org/v1/gonum/floats)
Package floats provides a set of helper routines for dealing with slices of float64.
The functions avoid allocations to allow for use within tight loops without garbage collection overhead.

View file

@ -1,11 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package floats provides a set of helper routines for dealing with slices
// of float64. The functions avoid allocations to allow for use within tight
// loops without garbage collection overhead.
//
// The convention used is that when a slice is being modified in place, it has
// the name dst.
package floats // import "gonum.org/v1/gonum/floats"

View file

@ -1,933 +0,0 @@
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this code is governed by a BSD-style
// license that can be found in the LICENSE file
package floats
import (
"errors"
"math"
"sort"
"strconv"
"gonum.org/v1/gonum/internal/asm/f64"
)
// Add adds, element-wise, the elements of s and dst, and stores in dst.
// Panics if the lengths of dst and s do not match.
func Add(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: length of the slices do not match")
}
f64.AxpyUnitaryTo(dst, 1, s, dst)
}
// AddTo adds, element-wise, the elements of s and t and
// stores the result in dst. Panics if the lengths of s, t and dst do not match.
func AddTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic("floats: length of adders do not match")
}
if len(dst) != len(s) {
panic("floats: length of destination does not match length of adder")
}
f64.AxpyUnitaryTo(dst, 1, s, t)
return dst
}
// AddConst adds the scalar c to all of the values in dst.
func AddConst(c float64, dst []float64) {
f64.AddConst(c, dst)
}
// AddScaled performs dst = dst + alpha * s.
// It panics if the lengths of dst and s are not equal.
func AddScaled(dst []float64, alpha float64, s []float64) {
if len(dst) != len(s) {
panic("floats: length of destination and source to not match")
}
f64.AxpyUnitaryTo(dst, alpha, s, dst)
}
// AddScaledTo performs dst = y + alpha * s, where alpha is a scalar,
// and dst, y and s are all slices.
// It panics if the lengths of dst, y, and s are not equal.
//
// At the return of the function, dst[i] = y[i] + alpha * s[i]
func AddScaledTo(dst, y []float64, alpha float64, s []float64) []float64 {
if len(dst) != len(s) || len(dst) != len(y) {
panic("floats: lengths of slices do not match")
}
f64.AxpyUnitaryTo(dst, alpha, s, y)
return dst
}
// argsort is a helper that implements sort.Interface, as used by
// Argsort.
type argsort struct {
s []float64
inds []int
}
func (a argsort) Len() int {
return len(a.s)
}
func (a argsort) Less(i, j int) bool {
return a.s[i] < a.s[j]
}
func (a argsort) Swap(i, j int) {
a.s[i], a.s[j] = a.s[j], a.s[i]
a.inds[i], a.inds[j] = a.inds[j], a.inds[i]
}
// Argsort sorts the elements of dst while tracking their original order.
// At the conclusion of Argsort, dst will contain the original elements of dst
// but sorted in increasing order, and inds will contain the original position
// of the elements in the slice such that dst[i] = origDst[inds[i]].
// It panics if the lengths of dst and inds do not match.
func Argsort(dst []float64, inds []int) {
if len(dst) != len(inds) {
panic("floats: length of inds does not match length of slice")
}
for i := range dst {
inds[i] = i
}
a := argsort{s: dst, inds: inds}
sort.Sort(a)
}
// Count applies the function f to every element of s and returns the number
// of times the function returned true.
func Count(f func(float64) bool, s []float64) int {
var n int
for _, val := range s {
if f(val) {
n++
}
}
return n
}
// CumProd finds the cumulative product of the first i elements in
// s and puts them in place into the ith element of the
// destination dst. A panic will occur if the lengths of arguments
// do not match.
//
// At the return of the function, dst[i] = s[i] * s[i-1] * s[i-2] * ...
func CumProd(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic("floats: length of destination does not match length of the source")
}
if len(dst) == 0 {
return dst
}
return f64.CumProd(dst, s)
}
// CumSum finds the cumulative sum of the first i elements in
// s and puts them in place into the ith element of the
// destination dst. A panic will occur if the lengths of arguments
// do not match.
//
// At the return of the function, dst[i] = s[i] + s[i-1] + s[i-2] + ...
func CumSum(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic("floats: length of destination does not match length of the source")
}
if len(dst) == 0 {
return dst
}
return f64.CumSum(dst, s)
}
// Distance computes the L-norm of s - t. See Norm for special cases.
// A panic will occur if the lengths of s and t do not match.
func Distance(s, t []float64, L float64) float64 {
if len(s) != len(t) {
panic("floats: slice lengths do not match")
}
if len(s) == 0 {
return 0
}
var norm float64
if L == 2 {
for i, v := range s {
diff := t[i] - v
norm = math.Hypot(norm, diff)
}
return norm
}
if L == 1 {
for i, v := range s {
norm += math.Abs(t[i] - v)
}
return norm
}
if math.IsInf(L, 1) {
for i, v := range s {
absDiff := math.Abs(t[i] - v)
if absDiff > norm {
norm = absDiff
}
}
return norm
}
for i, v := range s {
norm += math.Pow(math.Abs(t[i]-v), L)
}
return math.Pow(norm, 1/L)
}
// Div performs element-wise division dst / s
// and stores the value in dst. It panics if the
// lengths of s and t are not equal.
func Div(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: slice lengths do not match")
}
f64.Div(dst, s)
}
// DivTo performs element-wise division s / t
// and stores the value in dst. It panics if the
// lengths of s, t, and dst are not equal.
func DivTo(dst, s, t []float64) []float64 {
if len(s) != len(t) || len(dst) != len(t) {
panic("floats: slice lengths do not match")
}
return f64.DivTo(dst, s, t)
}
// Dot computes the dot product of s1 and s2, i.e.
// sum_{i = 1}^N s1[i]*s2[i].
// A panic will occur if lengths of arguments do not match.
func Dot(s1, s2 []float64) float64 {
if len(s1) != len(s2) {
panic("floats: lengths of the slices do not match")
}
return f64.DotUnitary(s1, s2)
}
// Equal returns true if the slices have equal lengths and
// all elements are numerically identical.
func Equal(s1, s2 []float64) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if s2[i] != val {
return false
}
}
return true
}
// EqualApprox returns true if the slices have equal lengths and
// all element pairs have an absolute tolerance less than tol or a
// relative tolerance less than tol.
func EqualApprox(s1, s2 []float64, tol float64) bool {
if len(s1) != len(s2) {
return false
}
for i, a := range s1 {
if !EqualWithinAbsOrRel(a, s2[i], tol, tol) {
return false
}
}
return true
}
// EqualFunc returns true if the slices have the same lengths
// and the function returns true for all element pairs.
func EqualFunc(s1, s2 []float64, f func(float64, float64) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if !f(val, s2[i]) {
return false
}
}
return true
}
// EqualWithinAbs returns true if a and b have an absolute
// difference of less than tol.
func EqualWithinAbs(a, b, tol float64) bool {
return a == b || math.Abs(a-b) <= tol
}
const minNormalFloat64 = 2.2250738585072014e-308
// EqualWithinRel returns true if the difference between a and b
// is not greater than tol times the greater value.
func EqualWithinRel(a, b, tol float64) bool {
if a == b {
return true
}
delta := math.Abs(a - b)
if delta <= minNormalFloat64 {
return delta <= tol*minNormalFloat64
}
// We depend on the division in this relationship to identify
// infinities (we rely on the NaN to fail the test) otherwise
// we compare Infs of the same sign and evaluate Infs as equal
// independent of sign.
return delta/math.Max(math.Abs(a), math.Abs(b)) <= tol
}
// EqualWithinAbsOrRel returns true if a and b are equal to within
// the absolute tolerance.
func EqualWithinAbsOrRel(a, b, absTol, relTol float64) bool {
if EqualWithinAbs(a, b, absTol) {
return true
}
return EqualWithinRel(a, b, relTol)
}
// EqualWithinULP returns true if a and b are equal to within
// the specified number of floating point units in the last place.
func EqualWithinULP(a, b float64, ulp uint) bool {
if a == b {
return true
}
if math.IsNaN(a) || math.IsNaN(b) {
return false
}
if math.Signbit(a) != math.Signbit(b) {
return math.Float64bits(math.Abs(a))+math.Float64bits(math.Abs(b)) <= uint64(ulp)
}
return ulpDiff(math.Float64bits(a), math.Float64bits(b)) <= uint64(ulp)
}
func ulpDiff(a, b uint64) uint64 {
if a > b {
return a - b
}
return b - a
}
// EqualLengths returns true if all of the slices have equal length,
// and false otherwise. Returns true if there are no input slices.
func EqualLengths(slices ...[]float64) bool {
// This length check is needed: http://play.golang.org/p/sdty6YiLhM
if len(slices) == 0 {
return true
}
l := len(slices[0])
for i := 1; i < len(slices); i++ {
if len(slices[i]) != l {
return false
}
}
return true
}
// Find applies f to every element of s and returns the indices of the first
// k elements for which the f returns true, or all such elements
// if k < 0.
// Find will reslice inds to have 0 length, and will append
// found indices to inds.
// If k > 0 and there are fewer than k elements in s satisfying f,
// all of the found elements will be returned along with an error.
// At the return of the function, the input inds will be in an undetermined state.
func Find(inds []int, f func(float64) bool, s []float64, k int) ([]int, error) {
// inds is also returned to allow for calling with nil
// Reslice inds to have zero length
inds = inds[:0]
// If zero elements requested, can just return
if k == 0 {
return inds, nil
}
// If k < 0, return all of the found indices
if k < 0 {
for i, val := range s {
if f(val) {
inds = append(inds, i)
}
}
return inds, nil
}
// Otherwise, find the first k elements
nFound := 0
for i, val := range s {
if f(val) {
inds = append(inds, i)
nFound++
if nFound == k {
return inds, nil
}
}
}
// Finished iterating over the loop, which means k elements were not found
return inds, errors.New("floats: insufficient elements found")
}
// HasNaN returns true if the slice s has any values that are NaN and false
// otherwise.
func HasNaN(s []float64) bool {
for _, v := range s {
if math.IsNaN(v) {
return true
}
}
return false
}
// LogSpan returns a set of n equally spaced points in log space between,
// l and u where N is equal to len(dst). The first element of the
// resulting dst will be l and the final element of dst will be u.
// Panics if len(dst) < 2
// Note that this call will return NaNs if either l or u are negative, and
// will return all zeros if l or u is zero.
// Also returns the mutated slice dst, so that it can be used in range, like:
//
// for i, x := range LogSpan(dst, l, u) { ... }
func LogSpan(dst []float64, l, u float64) []float64 {
Span(dst, math.Log(l), math.Log(u))
for i := range dst {
dst[i] = math.Exp(dst[i])
}
return dst
}
// LogSumExp returns the log of the sum of the exponentials of the values in s.
// Panics if s is an empty slice.
func LogSumExp(s []float64) float64 {
// Want to do this in a numerically stable way which avoids
// overflow and underflow
// First, find the maximum value in the slice.
maxval := Max(s)
if math.IsInf(maxval, 0) {
// If it's infinity either way, the logsumexp will be infinity as well
// returning now avoids NaNs
return maxval
}
var lse float64
// Compute the sumexp part
for _, val := range s {
lse += math.Exp(val - maxval)
}
// Take the log and add back on the constant taken out
return math.Log(lse) + maxval
}
// Max returns the maximum value in the input slice. If the slice is empty, Max will panic.
func Max(s []float64) float64 {
return s[MaxIdx(s)]
}
// MaxIdx returns the index of the maximum value in the input slice. If several
// entries have the maximum value, the first such index is returned. If the slice
// is empty, MaxIdx will panic.
func MaxIdx(s []float64) int {
if len(s) == 0 {
panic("floats: zero slice length")
}
max := math.NaN()
var ind int
for i, v := range s {
if math.IsNaN(v) {
continue
}
if v > max || math.IsNaN(max) {
max = v
ind = i
}
}
return ind
}
// Min returns the maximum value in the input slice. If the slice is empty, Min will panic.
func Min(s []float64) float64 {
return s[MinIdx(s)]
}
// MinIdx returns the index of the minimum value in the input slice. If several
// entries have the maximum value, the first such index is returned. If the slice
// is empty, MinIdx will panic.
func MinIdx(s []float64) int {
if len(s) == 0 {
panic("floats: zero slice length")
}
min := math.NaN()
var ind int
for i, v := range s {
if math.IsNaN(v) {
continue
}
if v < min || math.IsNaN(min) {
min = v
ind = i
}
}
return ind
}
// Mul performs element-wise multiplication between dst
// and s and stores the value in dst. Panics if the
// lengths of s and t are not equal.
func Mul(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: slice lengths do not match")
}
for i, val := range s {
dst[i] *= val
}
}
// MulTo performs element-wise multiplication between s
// and t and stores the value in dst. Panics if the
// lengths of s, t, and dst are not equal.
func MulTo(dst, s, t []float64) []float64 {
if len(s) != len(t) || len(dst) != len(t) {
panic("floats: slice lengths do not match")
}
for i, val := range t {
dst[i] = val * s[i]
}
return dst
}
const (
nanBits = 0x7ff8000000000000
nanMask = 0xfff8000000000000
)
// NaNWith returns an IEEE 754 "quiet not-a-number" value with the
// payload specified in the low 51 bits of payload.
// The NaN returned by math.NaN has a bit pattern equal to NaNWith(1).
func NaNWith(payload uint64) float64 {
return math.Float64frombits(nanBits | (payload &^ nanMask))
}
// NaNPayload returns the lowest 51 bits payload of an IEEE 754 "quiet
// not-a-number". For values of f other than quiet-NaN, NaNPayload
// returns zero and false.
func NaNPayload(f float64) (payload uint64, ok bool) {
b := math.Float64bits(f)
if b&nanBits != nanBits {
return 0, false
}
return b &^ nanMask, true
}
// NearestIdx returns the index of the element in s
// whose value is nearest to v. If several such
// elements exist, the lowest index is returned.
// NearestIdx panics if len(s) == 0.
func NearestIdx(s []float64, v float64) int {
if len(s) == 0 {
panic("floats: zero length slice")
}
switch {
case math.IsNaN(v):
return 0
case math.IsInf(v, 1):
return MaxIdx(s)
case math.IsInf(v, -1):
return MinIdx(s)
}
var ind int
dist := math.NaN()
for i, val := range s {
newDist := math.Abs(v - val)
// A NaN distance will not be closer.
if math.IsNaN(newDist) {
continue
}
if newDist < dist || math.IsNaN(dist) {
dist = newDist
ind = i
}
}
return ind
}
// NearestIdxForSpan return the index of a hypothetical vector created
// by Span with length n and bounds l and u whose value is closest
// to v. That is, NearestIdxForSpan(n, l, u, v) is equivalent to
// Nearest(Span(make([]float64, n),l,u),v) without an allocation.
// NearestIdxForSpan panics if n is less than two.
func NearestIdxForSpan(n int, l, u float64, v float64) int {
if n <= 1 {
panic("floats: span must have length >1")
}
if math.IsNaN(v) {
return 0
}
// Special cases for Inf and NaN.
switch {
case math.IsNaN(l) && !math.IsNaN(u):
return n - 1
case math.IsNaN(u):
return 0
case math.IsInf(l, 0) && math.IsInf(u, 0):
if l == u {
return 0
}
if n%2 == 1 {
if !math.IsInf(v, 0) {
return n / 2
}
if math.Copysign(1, v) == math.Copysign(1, l) {
return 0
}
return n/2 + 1
}
if math.Copysign(1, v) == math.Copysign(1, l) {
return 0
}
return n / 2
case math.IsInf(l, 0):
if v == l {
return 0
}
return n - 1
case math.IsInf(u, 0):
if v == u {
return n - 1
}
return 0
case math.IsInf(v, -1):
if l <= u {
return 0
}
return n - 1
case math.IsInf(v, 1):
if u <= l {
return 0
}
return n - 1
}
// Special cases for v outside (l, u) and (u, l).
switch {
case l < u:
if v <= l {
return 0
}
if v >= u {
return n - 1
}
case l > u:
if v >= l {
return 0
}
if v <= u {
return n - 1
}
default:
return 0
}
// Can't guarantee anything about exactly halfway between
// because of floating point weirdness.
return int((float64(n)-1)/(u-l)*(v-l) + 0.5)
}
// Norm returns the L norm of the slice S, defined as
// (sum_{i=1}^N s[i]^L)^{1/L}
// Special cases:
// L = math.Inf(1) gives the maximum absolute value.
// Does not correctly compute the zero norm (use Count).
func Norm(s []float64, L float64) float64 {
// Should this complain if L is not positive?
// Should this be done in log space for better numerical stability?
// would be more cost
// maybe only if L is high?
if len(s) == 0 {
return 0
}
if L == 2 {
twoNorm := math.Abs(s[0])
for i := 1; i < len(s); i++ {
twoNorm = math.Hypot(twoNorm, s[i])
}
return twoNorm
}
var norm float64
if L == 1 {
for _, val := range s {
norm += math.Abs(val)
}
return norm
}
if math.IsInf(L, 1) {
for _, val := range s {
norm = math.Max(norm, math.Abs(val))
}
return norm
}
for _, val := range s {
norm += math.Pow(math.Abs(val), L)
}
return math.Pow(norm, 1/L)
}
// ParseWithNA converts the string s to a float64 in v.
// If s equals missing, w is returned as 0, otherwise 1.
func ParseWithNA(s, missing string) (v, w float64, err error) {
if s == missing {
return 0, 0, nil
}
v, err = strconv.ParseFloat(s, 64)
if err == nil {
w = 1
}
return v, w, err
}
// Prod returns the product of the elements of the slice.
// Returns 1 if len(s) = 0.
func Prod(s []float64) float64 {
prod := 1.0
for _, val := range s {
prod *= val
}
return prod
}
// Reverse reverses the order of elements in the slice.
func Reverse(s []float64) {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
}
// Round returns the half away from zero rounded value of x with prec precision.
//
// Special cases are:
// Round(±0) = +0
// Round(±Inf) = ±Inf
// Round(NaN) = NaN
func Round(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
if x < 0 {
x = math.Ceil(intermed - 0.5)
} else {
x = math.Floor(intermed + 0.5)
}
if x == 0 {
return 0
}
return x / pow
}
// RoundEven returns the half even rounded value of x with prec precision.
//
// Special cases are:
// RoundEven(±0) = +0
// RoundEven(±Inf) = ±Inf
// RoundEven(NaN) = NaN
func RoundEven(x float64, prec int) float64 {
if x == 0 {
// Make sure zero is returned
// without the negative bit set.
return 0
}
// Fast path for positive precision on integers.
if prec >= 0 && x == math.Trunc(x) {
return x
}
pow := math.Pow10(prec)
intermed := x * pow
if math.IsInf(intermed, 0) {
return x
}
if isHalfway(intermed) {
correction, _ := math.Modf(math.Mod(intermed, 2))
intermed += correction
if intermed > 0 {
x = math.Floor(intermed)
} else {
x = math.Ceil(intermed)
}
} else {
if x < 0 {
x = math.Ceil(intermed - 0.5)
} else {
x = math.Floor(intermed + 0.5)
}
}
if x == 0 {
return 0
}
return x / pow
}
func isHalfway(x float64) bool {
_, frac := math.Modf(x)
frac = math.Abs(frac)
return frac == 0.5 || (math.Nextafter(frac, math.Inf(-1)) < 0.5 && math.Nextafter(frac, math.Inf(1)) > 0.5)
}
// Same returns true if the input slices have the same length and the all elements
// have the same value with NaN treated as the same.
func Same(s, t []float64) bool {
if len(s) != len(t) {
return false
}
for i, v := range s {
w := t[i]
if v != w && !(math.IsNaN(v) && math.IsNaN(w)) {
return false
}
}
return true
}
// Scale multiplies every element in dst by the scalar c.
func Scale(c float64, dst []float64) {
if len(dst) > 0 {
f64.ScalUnitary(c, dst)
}
}
// ScaleTo multiplies the elements in s by c and stores the result in dst.
func ScaleTo(dst []float64, c float64, s []float64) []float64 {
if len(dst) != len(s) {
panic("floats: lengths of slices do not match")
}
if len(dst) > 0 {
f64.ScalUnitaryTo(dst, c, s)
}
return dst
}
// Span returns a set of N equally spaced points between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u.
//
// Panics if len(dst) < 2.
//
// Span also returns the mutated slice dst, so that it can be used in range expressions,
// like:
//
// for i, x := range Span(dst, l, u) { ... }
func Span(dst []float64, l, u float64) []float64 {
n := len(dst)
if n < 2 {
panic("floats: destination must have length >1")
}
// Special cases for Inf and NaN.
switch {
case math.IsNaN(l):
for i := range dst[:len(dst)-1] {
dst[i] = math.NaN()
}
dst[len(dst)-1] = u
return dst
case math.IsNaN(u):
for i := range dst[1:] {
dst[i+1] = math.NaN()
}
dst[0] = l
return dst
case math.IsInf(l, 0) && math.IsInf(u, 0):
for i := range dst[:len(dst)/2] {
dst[i] = l
dst[len(dst)-i-1] = u
}
if len(dst)%2 == 1 {
if l != u {
dst[len(dst)/2] = 0
} else {
dst[len(dst)/2] = l
}
}
return dst
case math.IsInf(l, 0):
for i := range dst[:len(dst)-1] {
dst[i] = l
}
dst[len(dst)-1] = u
return dst
case math.IsInf(u, 0):
for i := range dst[1:] {
dst[i+1] = u
}
dst[0] = l
return dst
}
step := (u - l) / float64(n-1)
for i := range dst {
dst[i] = l + step*float64(i)
}
return dst
}
// Sub subtracts, element-wise, the elements of s from dst. Panics if
// the lengths of dst and s do not match.
func Sub(dst, s []float64) {
if len(dst) != len(s) {
panic("floats: length of the slices do not match")
}
f64.AxpyUnitaryTo(dst, -1, s, dst)
}
// SubTo subtracts, element-wise, the elements of t from s and
// stores the result in dst. Panics if the lengths of s, t and dst do not match.
func SubTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic("floats: length of subtractor and subtractee do not match")
}
if len(dst) != len(s) {
panic("floats: length of destination does not match length of subtractor")
}
f64.AxpyUnitaryTo(dst, -1, t, s)
return dst
}
// Sum returns the sum of the elements of the slice.
func Sum(s []float64) float64 {
return f64.Sum(s)
}
// Within returns the first index i where s[i] <= v < s[i+1]. Within panics if:
// - len(s) < 2
// - s is not sorted
func Within(s []float64, v float64) int {
if len(s) < 2 {
panic("floats: slice length less than 2")
}
if !sort.Float64sAreSorted(s) {
panic("floats: input slice not sorted")
}
if v < s[0] || v >= s[len(s)-1] || math.IsNaN(v) {
return -1
}
for i, f := range s[1:] {
if v < f {
return i
}
}
return -1
}

View file

@ -1 +0,0 @@
test.out

View file

@ -1,3 +0,0 @@
# Gonum graph [![GoDoc](https://godoc.org/gonum.org/v1/gonum/graph?status.svg)](https://godoc.org/gonum.org/v1/gonum/graph)
This is a generalized graph package for the Go language.

View file

@ -1,9 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package graph defines graph interfaces.
//
// Routines to test contract compliance by user implemented graph types
// are available in gonum.org/v1/gonum/graph/testgraph.
package graph // import "gonum.org/v1/gonum/graph"

View file

@ -1,282 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph
// Node is a graph node. It returns a graph-unique integer ID.
type Node interface {
ID() int64
}
// Edge is a graph edge. In directed graphs, the direction of the
// edge is given from -> to, otherwise the edge is semantically
// unordered.
type Edge interface {
// From returns the from node of the edge.
From() Node
// To returns the to node of the edge.
To() Node
// ReversedEdge returns an edge that has
// the end points of the receiver swapped.
ReversedEdge() Edge
}
// WeightedEdge is a weighted graph edge. In directed graphs, the direction
// of the edge is given from -> to, otherwise the edge is semantically
// unordered.
type WeightedEdge interface {
Edge
Weight() float64
}
// Graph is a generalized graph.
type Graph interface {
// Node returns the node with the given ID if it exists
// in the graph, and nil otherwise.
Node(id int64) Node
// Nodes returns all the nodes in the graph.
//
// Nodes must not return nil.
Nodes() Nodes
// From returns all nodes that can be reached directly
// from the node with the given ID.
//
// From must not return nil.
From(id int64) Nodes
// HasEdgeBetween returns whether an edge exists between
// nodes with IDs xid and yid without considering direction.
HasEdgeBetween(xid, yid int64) bool
// Edge returns the edge from u to v, with IDs uid and vid,
// if such an edge exists and nil otherwise. The node v
// must be directly reachable from u as defined by the
// From method.
Edge(uid, vid int64) Edge
}
// Weighted is a weighted graph.
type Weighted interface {
Graph
// WeightedEdge returns the weighted edge from u to v
// with IDs uid and vid if such an edge exists and
// nil otherwise. The node v must be directly
// reachable from u as defined by the From method.
WeightedEdge(uid, vid int64) WeightedEdge
// Weight returns the weight for the edge between
// x and y with IDs xid and yid if Edge(xid, yid)
// returns a non-nil Edge.
// If x and y are the same node or there is no
// joining edge between the two nodes the weight
// value returned is implementation dependent.
// Weight returns true if an edge exists between
// x and y or if x and y have the same ID, false
// otherwise.
Weight(xid, yid int64) (w float64, ok bool)
}
// Undirected is an undirected graph.
type Undirected interface {
Graph
// EdgeBetween returns the edge between nodes x and y
// with IDs xid and yid.
EdgeBetween(xid, yid int64) Edge
}
// WeightedUndirected is a weighted undirected graph.
type WeightedUndirected interface {
Weighted
// WeightedEdgeBetween returns the edge between nodes
// x and y with IDs xid and yid.
WeightedEdgeBetween(xid, yid int64) WeightedEdge
}
// Directed is a directed graph.
type Directed interface {
Graph
// HasEdgeFromTo returns whether an edge exists
// in the graph from u to v with IDs uid and vid.
HasEdgeFromTo(uid, vid int64) bool
// To returns all nodes that can reach directly
// to the node with the given ID.
//
// To must not return nil.
To(id int64) Nodes
}
// WeightedDirected is a weighted directed graph.
type WeightedDirected interface {
Weighted
// HasEdgeFromTo returns whether an edge exists
// in the graph from u to v with the IDs uid and
// vid.
HasEdgeFromTo(uid, vid int64) bool
// To returns all nodes that can reach directly
// to the node with the given ID.
//
// To must not return nil.
To(id int64) Nodes
}
// NodeAdder is an interface for adding arbitrary nodes to a graph.
type NodeAdder interface {
// NewNode returns a new Node with a unique
// arbitrary ID.
NewNode() Node
// AddNode adds a node to the graph. AddNode panics if
// the added node ID matches an existing node ID.
AddNode(Node)
}
// NodeRemover is an interface for removing nodes from a graph.
type NodeRemover interface {
// RemoveNode removes the node with the given ID
// from the graph, as well as any edges attached
// to it. If the node is not in the graph it is
// a no-op.
RemoveNode(id int64)
}
// EdgeAdder is an interface for adding edges to a graph.
type EdgeAdder interface {
// NewEdge returns a new Edge from the source to the destination node.
NewEdge(from, to Node) Edge
// SetEdge adds an edge from one node to another.
// If the graph supports node addition the nodes
// will be added if they do not exist, otherwise
// SetEdge will panic.
// The behavior of an EdgeAdder when the IDs
// returned by e.From() and e.To() are equal is
// implementation-dependent.
// Whether e, e.From() and e.To() are stored
// within the graph is implementation dependent.
SetEdge(e Edge)
}
// WeightedEdgeAdder is an interface for adding edges to a graph.
type WeightedEdgeAdder interface {
// NewWeightedEdge returns a new WeightedEdge from
// the source to the destination node.
NewWeightedEdge(from, to Node, weight float64) WeightedEdge
// SetWeightedEdge adds an edge from one node to
// another. If the graph supports node addition
// the nodes will be added if they do not exist,
// otherwise SetWeightedEdge will panic.
// The behavior of a WeightedEdgeAdder when the IDs
// returned by e.From() and e.To() are equal is
// implementation-dependent.
// Whether e, e.From() and e.To() are stored
// within the graph is implementation dependent.
SetWeightedEdge(e WeightedEdge)
}
// EdgeRemover is an interface for removing nodes from a graph.
type EdgeRemover interface {
// RemoveEdge removes the edge with the given end
// IDs, leaving the terminal nodes. If the edge
// does not exist it is a no-op.
RemoveEdge(fid, tid int64)
}
// Builder is a graph that can have nodes and edges added.
type Builder interface {
NodeAdder
EdgeAdder
}
// WeightedBuilder is a graph that can have nodes and weighted edges added.
type WeightedBuilder interface {
NodeAdder
WeightedEdgeAdder
}
// UndirectedBuilder is an undirected graph builder.
type UndirectedBuilder interface {
Undirected
Builder
}
// UndirectedWeightedBuilder is an undirected weighted graph builder.
type UndirectedWeightedBuilder interface {
Undirected
WeightedBuilder
}
// DirectedBuilder is a directed graph builder.
type DirectedBuilder interface {
Directed
Builder
}
// DirectedWeightedBuilder is a directed weighted graph builder.
type DirectedWeightedBuilder interface {
Directed
WeightedBuilder
}
// Copy copies nodes and edges as undirected edges from the source to the destination
// without first clearing the destination. Copy will panic if a node ID in the source
// graph matches a node ID in the destination.
//
// If the source is undirected and the destination is directed both directions will
// be present in the destination after the copy is complete.
func Copy(dst Builder, src Graph) {
nodes := src.Nodes()
for nodes.Next() {
dst.AddNode(nodes.Node())
}
nodes.Reset()
for nodes.Next() {
u := nodes.Node()
uid := u.ID()
to := src.From(uid)
for to.Next() {
v := to.Node()
dst.SetEdge(src.Edge(uid, v.ID()))
}
}
}
// CopyWeighted copies nodes and edges as undirected edges from the source to the destination
// without first clearing the destination. Copy will panic if a node ID in the source
// graph matches a node ID in the destination.
//
// If the source is undirected and the destination is directed both directions will
// be present in the destination after the copy is complete.
//
// If the source is a directed graph, the destination is undirected, and a fundamental
// cycle exists with two nodes where the edge weights differ, the resulting destination
// graph's edge weight between those nodes is undefined. If there is a defined function
// to resolve such conflicts, an UndirectWeighted may be used to do this.
func CopyWeighted(dst WeightedBuilder, src Weighted) {
nodes := src.Nodes()
for nodes.Next() {
dst.AddNode(nodes.Node())
}
nodes.Reset()
for nodes.Next() {
u := nodes.Node()
uid := u.ID()
to := src.From(uid)
for to.Next() {
v := to.Node()
dst.SetWeightedEdge(src.WeightedEdge(uid, v.ID()))
}
}
}

View file

@ -1,6 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package linear provides common linear data structures.
package linear // import "gonum.org/v1/gonum/graph/internal/linear"

View file

@ -1,73 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package linear
import (
"gonum.org/v1/gonum/graph"
)
// NodeStack implements a LIFO stack of graph.Node.
type NodeStack []graph.Node
// Len returns the number of graph.Nodes on the stack.
func (s *NodeStack) Len() int { return len(*s) }
// Pop returns the last graph.Node on the stack and removes it
// from the stack.
func (s *NodeStack) Pop() graph.Node {
v := *s
v, n := v[:len(v)-1], v[len(v)-1]
*s = v
return n
}
// Push adds the node n to the stack at the last position.
func (s *NodeStack) Push(n graph.Node) { *s = append(*s, n) }
// NodeQueue implements a FIFO queue.
type NodeQueue struct {
head int
data []graph.Node
}
// Len returns the number of graph.Nodes in the queue.
func (q *NodeQueue) Len() int { return len(q.data) - q.head }
// Enqueue adds the node n to the back of the queue.
func (q *NodeQueue) Enqueue(n graph.Node) {
if len(q.data) == cap(q.data) && q.head > 0 {
l := q.Len()
copy(q.data, q.data[q.head:])
q.head = 0
q.data = append(q.data[:l], n)
} else {
q.data = append(q.data, n)
}
}
// Dequeue returns the graph.Node at the front of the queue and
// removes it from the queue.
func (q *NodeQueue) Dequeue() graph.Node {
if q.Len() == 0 {
panic("queue: empty queue")
}
var n graph.Node
n, q.data[q.head] = q.data[q.head], nil
q.head++
if q.Len() == 0 {
q.head = 0
q.data = q.data[:0]
}
return n
}
// Reset clears the queue for reuse.
func (q *NodeQueue) Reset() {
q.head = 0
q.data = q.data[:0]
}

View file

@ -1,6 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ordered provides common sort ordering types.
package ordered // import "gonum.org/v1/gonum/graph/internal/ordered"

View file

@ -1,93 +0,0 @@
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ordered
import "gonum.org/v1/gonum/graph"
// ByID implements the sort.Interface sorting a slice of graph.Node
// by ID.
type ByID []graph.Node
func (n ByID) Len() int { return len(n) }
func (n ByID) Less(i, j int) bool { return n[i].ID() < n[j].ID() }
func (n ByID) Swap(i, j int) { n[i], n[j] = n[j], n[i] }
// BySliceValues implements the sort.Interface sorting a slice of
// []int64 lexically by the values of the []int64.
type BySliceValues [][]int64
func (c BySliceValues) Len() int { return len(c) }
func (c BySliceValues) Less(i, j int) bool {
a, b := c[i], c[j]
l := len(a)
if len(b) < l {
l = len(b)
}
for k, v := range a[:l] {
if v < b[k] {
return true
}
if v > b[k] {
return false
}
}
return len(a) < len(b)
}
func (c BySliceValues) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// BySliceIDs implements the sort.Interface sorting a slice of
// []graph.Node lexically by the IDs of the []graph.Node.
type BySliceIDs [][]graph.Node
func (c BySliceIDs) Len() int { return len(c) }
func (c BySliceIDs) Less(i, j int) bool {
a, b := c[i], c[j]
l := len(a)
if len(b) < l {
l = len(b)
}
for k, v := range a[:l] {
if v.ID() < b[k].ID() {
return true
}
if v.ID() > b[k].ID() {
return false
}
}
return len(a) < len(b)
}
func (c BySliceIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// Int64s implements the sort.Interface sorting a slice of
// int64.
type Int64s []int64
func (s Int64s) Len() int { return len(s) }
func (s Int64s) Less(i, j int) bool { return s[i] < s[j] }
func (s Int64s) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// Reverse reverses the order of nodes.
func Reverse(nodes []graph.Node) {
for i, j := 0, len(nodes)-1; i < j; i, j = i+1, j-1 {
nodes[i], nodes[j] = nodes[j], nodes[i]
}
}
// LinesByIDs implements the sort.Interface sorting a slice of graph.LinesByIDs
// lexically by the From IDs, then by the To IDs, finally by the Line IDs.
type LinesByIDs []graph.Line
func (n LinesByIDs) Len() int { return len(n) }
func (n LinesByIDs) Less(i, j int) bool {
a, b := n[i], n[j]
if a.From().ID() != b.From().ID() {
return a.From().ID() < b.From().ID()
}
if a.To().ID() != b.To().ID() {
return a.To().ID() < b.To().ID()
}
return n[i].ID() < n[j].ID()
}
func (n LinesByIDs) Swap(i, j int) { n[i], n[j] = n[j], n[i] }

View file

@ -1,6 +0,0 @@
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package set provides integer and graph.Node sets.
package set // import "gonum.org/v1/gonum/graph/internal/set"

View file

@ -1,36 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine,!safe
package set
import "unsafe"
// same determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use unsafe to get
// the maps' pointer values to compare.
func same(a, b Nodes) bool {
return *(*uintptr)(unsafe.Pointer(&a)) == *(*uintptr)(unsafe.Pointer(&b))
}
// intsSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use unsafe to get
// the maps' pointer values to compare.
func intsSame(a, b Ints) bool {
return *(*uintptr)(unsafe.Pointer(&a)) == *(*uintptr)(unsafe.Pointer(&b))
}
// int64sSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use unsafe to get
// the maps' pointer values to compare.
func int64sSame(a, b Int64s) bool {
return *(*uintptr)(unsafe.Pointer(&a)) == *(*uintptr)(unsafe.Pointer(&b))
}

View file

@ -1,36 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build appengine safe
package set
import "reflect"
// same determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use reflect to get
// the maps' pointer values to compare.
func same(a, b Nodes) bool {
return reflect.ValueOf(a).Pointer() == reflect.ValueOf(b).Pointer()
}
// intsSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use reflect to get
// the maps' pointer values to compare.
func intsSame(a, b Ints) bool {
return reflect.ValueOf(a).Pointer() == reflect.ValueOf(b).Pointer()
}
// int64sSame determines whether two sets are backed by the same store. In the
// current implementation using hash maps it makes use of the fact that
// hash maps are passed as a pointer to a runtime Hmap struct. A map is
// not seen by the runtime as a pointer though, so we use reflect to get
// the maps' pointer values to compare.
func int64sSame(a, b Int64s) bool {
return reflect.ValueOf(a).Pointer() == reflect.ValueOf(b).Pointer()
}

View file

@ -1,228 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package set
import "gonum.org/v1/gonum/graph"
// Ints is a set of int identifiers.
type Ints map[int]struct{}
// The simple accessor methods for Ints are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Ints) Add(e int) {
s[e] = struct{}{}
}
// Has reports the existence of the element in the set.
func (s Ints) Has(e int) bool {
_, ok := s[e]
return ok
}
// Remove deletes the specified element from the set.
func (s Ints) Remove(e int) {
delete(s, e)
}
// Count reports the number of elements stored in the set.
func (s Ints) Count() int {
return len(s)
}
// IntsEqual reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func IntsEqual(a, b Ints) bool {
if intsSame(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// Int64s is a set of int64 identifiers.
type Int64s map[int64]struct{}
// The simple accessor methods for Ints are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Int64s) Add(e int64) {
s[e] = struct{}{}
}
// Has reports the existence of the element in the set.
func (s Int64s) Has(e int64) bool {
_, ok := s[e]
return ok
}
// Remove deletes the specified element from the set.
func (s Int64s) Remove(e int64) {
delete(s, e)
}
// Count reports the number of elements stored in the set.
func (s Int64s) Count() int {
return len(s)
}
// Int64sEqual reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func Int64sEqual(a, b Int64s) bool {
if int64sSame(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// Nodes is a set of nodes keyed in their integer identifiers.
type Nodes map[int64]graph.Node
// NewNodes returns a new Nodes.
func NewNodes() Nodes {
return make(Nodes)
}
// NewNodes returns a new Nodes with the given size hint, n.
func NewNodesSize(n int) Nodes {
return make(Nodes, n)
}
// The simple accessor methods for Nodes are provided to allow ease of
// implementation change should the need arise.
// Add inserts an element into the set.
func (s Nodes) Add(n graph.Node) {
s[n.ID()] = n
}
// Remove deletes the specified element from the set.
func (s Nodes) Remove(e graph.Node) {
delete(s, e.ID())
}
// Count returns the number of element in the set.
func (s Nodes) Count() int {
return len(s)
}
// Has reports the existence of the elements in the set.
func (s Nodes) Has(n graph.Node) bool {
_, ok := s[n.ID()]
return ok
}
// CloneNodes returns a clone of src.
func CloneNodes(src Nodes) Nodes {
dst := make(Nodes, len(src))
for e, n := range src {
dst[e] = n
}
return dst
}
// Equal reports set equality between the parameters. Sets are equal if
// and only if they have the same elements.
func Equal(a, b Nodes) bool {
if same(a, b) {
return true
}
if len(a) != len(b) {
return false
}
for e := range a {
if _, ok := b[e]; !ok {
return false
}
}
return true
}
// UnionOfNodes returns the union of a and b.
//
// The union of two sets, a and b, is the set containing all the
// elements of each, for instance:
//
// {a,b,c} UNION {d,e,f} = {a,b,c,d,e,f}
//
// Since sets may not have repetition, unions of two sets that overlap
// do not contain repeat elements, that is:
//
// {a,b,c} UNION {b,c,d} = {a,b,c,d}
//
func UnionOfNodes(a, b Nodes) Nodes {
if same(a, b) {
return CloneNodes(a)
}
dst := make(Nodes)
for e, n := range a {
dst[e] = n
}
for e, n := range b {
dst[e] = n
}
return dst
}
// IntersectionOfNodes returns the intersection of a and b.
//
// The intersection of two sets, a and b, is the set containing all
// the elements shared between the two sets, for instance:
//
// {a,b,c} INTERSECT {b,c,d} = {b,c}
//
// The intersection between a set and itself is itself, and thus
// effectively a copy operation:
//
// {a,b,c} INTERSECT {a,b,c} = {a,b,c}
//
// The intersection between two sets that share no elements is the empty
// set:
//
// {a,b,c} INTERSECT {d,e,f} = {}
//
func IntersectionOfNodes(a, b Nodes) Nodes {
if same(a, b) {
return CloneNodes(a)
}
dst := make(Nodes)
if len(a) > len(b) {
a, b = b, a
}
for e, n := range a {
if _, ok := b[e]; ok {
dst[e] = n
}
}
return dst
}

View file

@ -1,54 +0,0 @@
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package uid implements unique ID provision for graphs.
package uid
import "gonum.org/v1/gonum/graph/internal/set"
// Max is the maximum value of int64.
const Max = int64(^uint64(0) >> 1)
// Set implements available ID storage.
type Set struct {
maxID int64
used, free set.Int64s
}
// NewSet returns a new Set. The returned value should not be passed except by pointer.
func NewSet() Set {
return Set{maxID: -1, used: make(set.Int64s), free: make(set.Int64s)}
}
// NewID returns a new unique ID. The ID returned is not considered used
// until passed in a call to use.
func (s *Set) NewID() int64 {
for id := range s.free {
return id
}
if s.maxID != Max {
return s.maxID + 1
}
for id := int64(0); id <= s.maxID+1; id++ {
if !s.used.Has(id) {
return id
}
}
panic("unreachable")
}
// Use adds the id to the used IDs in the Set.
func (s *Set) Use(id int64) {
s.used.Add(id)
s.free.Remove(id)
if id > s.maxID {
s.maxID = id
}
}
// Release frees the id for reuse.
func (s *Set) Release(id int64) {
s.free.Add(id)
s.used.Remove(id)
}

View file

@ -1,9 +0,0 @@
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package iterator provides node, edge and line iterators.
//
// The iterators provided satisfy the graph.Nodes, graph.Edges and
// graph.Lines interfaces.
package iterator

Some files were not shown because too many files have changed in this diff Show more