-- An affinity mode which makes sure connections are rebalanced when a deployment is scaled. -- The advantage of this mode is that the load on the pods will be redistributed. -- The drawback of this mode is that, when scaling up a deployment, roughly (n-c)/n users -- will lose their session, where c is the current number of pods and n is the new number of -- pods. -- local balancer_sticky = require("balancer.sticky") local math = require("math") local resty_chash = require("resty.chash") local util = require("util") local _M = balancer_sticky:new() -- Consider the situation of N upstreams one of which is failing. -- Then the probability to obtain failing upstream after M iterations would be close to (1/N)**M. -- For the worst case (2 upstreams; 20 iterations) it would be ~10**(-6) -- which is much better then ~10**(-3) for 10 iterations. local MAX_UPSTREAM_CHECKS_COUNT = 20 function _M.new(self, backend) local nodes = util.get_nodes(backend.endpoints) local o = { name = "sticky_balanced", instance = resty_chash:new(nodes) } setmetatable(o, self) self.__index = self balancer_sticky.sync(o, backend) return o end function _M.get_routing_key(self) return self:get_cookie(), nil end function _M.set_routing_key(self, key) self:set_cookie(key) end function _M.pick_new_upstream(self, failed_upstreams) for i = 1, MAX_UPSTREAM_CHECKS_COUNT do local key = string.format("%s.%s.%s", ngx.now() + i, ngx.worker.pid(), math.random(999999)) local new_upstream = self.instance:find(key) if not failed_upstreams[new_upstream] then return new_upstream, key end end return nil, nil end return _M