ingress-nginx-helm/vendor/gonum.org/v1/gonum/graph/topo/tarjan.go
Manuel Alejandro de Brito Fontes 3dd1699637
Add dependencies for code generator
2019-05-14 20:15:49 -04:00

199 lines
5.7 KiB
Go

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"fmt"
"sort"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/internal/set"
)
// Unorderable is an error containing sets of unorderable graph.Nodes.
type Unorderable [][]graph.Node
// Error satisfies the error interface.
func (e Unorderable) Error() string {
const maxNodes = 10
var n int
for _, c := range e {
n += len(c)
}
if n > maxNodes {
// Don't return errors that are too long.
return fmt.Sprintf("topo: no topological ordering: %d nodes in %d cyclic components", n, len(e))
}
return fmt.Sprintf("topo: no topological ordering: cyclic components: %v", [][]graph.Node(e))
}
func lexical(nodes []graph.Node) { sort.Sort(ordered.ByID(nodes)) }
// Sort performs a topological sort of the directed graph g returning the 'from' to 'to'
// sort order. If a topological ordering is not possible, an Unorderable error is returned
// listing cyclic components in g with each cyclic component's members sorted by ID. When
// an Unorderable error is returned, each cyclic component's topological position within
// the sorted nodes is marked with a nil graph.Node.
func Sort(g graph.Directed) (sorted []graph.Node, err error) {
sccs := TarjanSCC(g)
return sortedFrom(sccs, lexical)
}
// SortStabilized performs a topological sort of the directed graph g returning the 'from'
// to 'to' sort order, or the order defined by the in place order sort function where there
// is no unambiguous topological ordering. If a topological ordering is not possible, an
// Unorderable error is returned listing cyclic components in g with each cyclic component's
// members sorted by the provided order function. If order is nil, nodes are ordered lexically
// by node ID. When an Unorderable error is returned, each cyclic component's topological
// position within the sorted nodes is marked with a nil graph.Node.
func SortStabilized(g graph.Directed, order func([]graph.Node)) (sorted []graph.Node, err error) {
if order == nil {
order = lexical
}
sccs := tarjanSCCstabilized(g, order)
return sortedFrom(sccs, order)
}
func sortedFrom(sccs [][]graph.Node, order func([]graph.Node)) ([]graph.Node, error) {
sorted := make([]graph.Node, 0, len(sccs))
var sc Unorderable
for _, s := range sccs {
if len(s) != 1 {
order(s)
sc = append(sc, s)
sorted = append(sorted, nil)
continue
}
sorted = append(sorted, s[0])
}
var err error
if sc != nil {
for i, j := 0, len(sc)-1; i < j; i, j = i+1, j-1 {
sc[i], sc[j] = sc[j], sc[i]
}
err = sc
}
ordered.Reverse(sorted)
return sorted, err
}
// TarjanSCC returns the strongly connected components of the graph g using Tarjan's algorithm.
//
// A strongly connected component of a graph is a set of vertices where it's possible to reach any
// vertex in the set from any other (meaning there's a cycle between them.)
//
// Generally speaking, a directed graph where the number of strongly connected components is equal
// to the number of nodes is acyclic, unless you count reflexive edges as a cycle (which requires
// only a little extra testing.)
//
func TarjanSCC(g graph.Directed) [][]graph.Node {
return tarjanSCCstabilized(g, nil)
}
func tarjanSCCstabilized(g graph.Directed, order func([]graph.Node)) [][]graph.Node {
nodes := graph.NodesOf(g.Nodes())
var succ func(id int64) []graph.Node
if order == nil {
succ = func(id int64) []graph.Node {
return graph.NodesOf(g.From(id))
}
} else {
order(nodes)
ordered.Reverse(nodes)
succ = func(id int64) []graph.Node {
to := graph.NodesOf(g.From(id))
order(to)
ordered.Reverse(to)
return to
}
}
t := tarjan{
succ: succ,
indexTable: make(map[int64]int, len(nodes)),
lowLink: make(map[int64]int, len(nodes)),
onStack: make(set.Int64s),
}
for _, v := range nodes {
if t.indexTable[v.ID()] == 0 {
t.strongconnect(v)
}
}
return t.sccs
}
// tarjan implements Tarjan's strongly connected component finding
// algorithm. The implementation is from the pseudocode at
//
// http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm?oldid=642744644
//
type tarjan struct {
succ func(id int64) []graph.Node
index int
indexTable map[int64]int
lowLink map[int64]int
onStack set.Int64s
stack []graph.Node
sccs [][]graph.Node
}
// strongconnect is the strongconnect function described in the
// wikipedia article.
func (t *tarjan) strongconnect(v graph.Node) {
vID := v.ID()
// Set the depth index for v to the smallest unused index.
t.index++
t.indexTable[vID] = t.index
t.lowLink[vID] = t.index
t.stack = append(t.stack, v)
t.onStack.Add(vID)
// Consider successors of v.
for _, w := range t.succ(vID) {
wID := w.ID()
if t.indexTable[wID] == 0 {
// Successor w has not yet been visited; recur on it.
t.strongconnect(w)
t.lowLink[vID] = min(t.lowLink[vID], t.lowLink[wID])
} else if t.onStack.Has(wID) {
// Successor w is in stack s and hence in the current SCC.
t.lowLink[vID] = min(t.lowLink[vID], t.indexTable[wID])
}
}
// If v is a root node, pop the stack and generate an SCC.
if t.lowLink[vID] == t.indexTable[vID] {
// Start a new strongly connected component.
var (
scc []graph.Node
w graph.Node
)
for {
w, t.stack = t.stack[len(t.stack)-1], t.stack[:len(t.stack)-1]
t.onStack.Remove(w.ID())
// Add w to current strongly connected component.
scc = append(scc, w)
if w.ID() == vID {
break
}
}
// Output the current strongly connected component.
t.sccs = append(t.sccs, scc)
}
}
func min(a, b int) int {
if a < b {
return a
}
return b
}