ingress-nginx-helm/vendor/gonum.org/v1/gonum/lapack/gonum/dgetrs.go
Manuel Alejandro de Brito Fontes 3dd1699637
Add dependencies for code generator
2019-05-14 20:15:49 -04:00

72 lines
2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dgetrs solves a system of equations using an LU factorization.
// The system of equations solved is
// A * X = B if trans == blas.Trans
// A^T * X = B if trans == blas.NoTrans
// A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs.
//
// On entry b contains the elements of the matrix B. On exit, b contains the
// elements of X, the solution to the system of equations.
//
// a and ipiv contain the LU factorization of A and the permutation indices as
// computed by Dgetrf. ipiv is zero-indexed.
func (impl Implementation) Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) {
switch {
case trans != blas.NoTrans && trans != blas.Trans && trans != blas.ConjTrans:
panic(badTrans)
case n < 0:
panic(nLT0)
case nrhs < 0:
panic(nrhsLT0)
case lda < max(1, n):
panic(badLdA)
case ldb < max(1, nrhs):
panic(badLdB)
}
// Quick return if possible.
if n == 0 || nrhs == 0 {
return
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(b) < (n-1)*ldb+nrhs:
panic(shortB)
case len(ipiv) != n:
panic(badLenIpiv)
}
bi := blas64.Implementation()
if trans == blas.NoTrans {
// Solve A * X = B.
impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, 1)
// Solve L * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.Unit,
n, nrhs, 1, a, lda, b, ldb)
// Solve U * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Upper, blas.NoTrans, blas.NonUnit,
n, nrhs, 1, a, lda, b, ldb)
return
}
// Solve A^T * X = B.
// Solve U^T * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit,
n, nrhs, 1, a, lda, b, ldb)
// Solve L^T * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Lower, blas.Trans, blas.Unit,
n, nrhs, 1, a, lda, b, ldb)
impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, -1)
}