ingress-nginx-helm/vendor/gonum.org/v1/gonum/lapack/gonum/dlanv2.go
Manuel Alejandro de Brito Fontes 3dd1699637
Add dependencies for code generator
2019-05-14 20:15:49 -04:00

132 lines
3.1 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "math"
// Dlanv2 computes the Schur factorization of a real 2×2 matrix:
// [ a b ] = [ cs -sn ] * [ aa bb ] * [ cs sn ]
// [ c d ] [ sn cs ] [ cc dd ] * [-sn cs ]
// If cc is zero, aa and dd are real eigenvalues of the matrix. Otherwise it
// holds that aa = dd and bb*cc < 0, and aa ± sqrt(bb*cc) are complex conjugate
// eigenvalues. The real and imaginary parts of the eigenvalues are returned in
// (rt1r,rt1i) and (rt2r,rt2i).
func (impl Implementation) Dlanv2(a, b, c, d float64) (aa, bb, cc, dd float64, rt1r, rt1i, rt2r, rt2i float64, cs, sn float64) {
switch {
case c == 0: // Matrix is already upper triangular.
aa = a
bb = b
cc = 0
dd = d
cs = 1
sn = 0
case b == 0: // Matrix is lower triangular, swap rows and columns.
aa = d
bb = -c
cc = 0
dd = a
cs = 0
sn = 1
case a == d && math.Signbit(b) != math.Signbit(c): // Matrix is already in the standard Schur form.
aa = a
bb = b
cc = c
dd = d
cs = 1
sn = 0
default:
temp := a - d
p := temp / 2
bcmax := math.Max(math.Abs(b), math.Abs(c))
bcmis := math.Min(math.Abs(b), math.Abs(c))
if b*c < 0 {
bcmis *= -1
}
scale := math.Max(math.Abs(p), bcmax)
z := p/scale*p + bcmax/scale*bcmis
eps := dlamchP
if z >= 4*eps {
// Real eigenvalues. Compute aa and dd.
if p > 0 {
z = p + math.Sqrt(scale)*math.Sqrt(z)
} else {
z = p - math.Sqrt(scale)*math.Sqrt(z)
}
aa = d + z
dd = d - bcmax/z*bcmis
// Compute bb and the rotation matrix.
tau := impl.Dlapy2(c, z)
cs = z / tau
sn = c / tau
bb = b - c
cc = 0
} else {
// Complex eigenvalues, or real (almost) equal eigenvalues.
// Make diagonal elements equal.
sigma := b + c
tau := impl.Dlapy2(sigma, temp)
cs = math.Sqrt((1 + math.Abs(sigma)/tau) / 2)
sn = -p / (tau * cs)
if sigma < 0 {
sn *= -1
}
// Compute [ aa bb ] = [ a b ] [ cs -sn ]
// [ cc dd ] [ c d ] [ sn cs ]
aa = a*cs + b*sn
bb = -a*sn + b*cs
cc = c*cs + d*sn
dd = -c*sn + d*cs
// Compute [ a b ] = [ cs sn ] [ aa bb ]
// [ c d ] [-sn cs ] [ cc dd ]
a = aa*cs + cc*sn
b = bb*cs + dd*sn
c = -aa*sn + cc*cs
d = -bb*sn + dd*cs
temp = (a + d) / 2
aa = temp
bb = b
cc = c
dd = temp
if cc != 0 {
if bb != 0 {
if math.Signbit(bb) == math.Signbit(cc) {
// Real eigenvalues, reduce to
// upper triangular form.
sab := math.Sqrt(math.Abs(bb))
sac := math.Sqrt(math.Abs(cc))
p = sab * sac
if cc < 0 {
p *= -1
}
tau = 1 / math.Sqrt(math.Abs(bb+cc))
aa = temp + p
bb = bb - cc
cc = 0
dd = temp - p
cs1 := sab * tau
sn1 := sac * tau
cs, sn = cs*cs1-sn*sn1, cs*sn1+sn+cs1
}
} else {
bb = -cc
cc = 0
cs, sn = -sn, cs
}
}
}
}
// Store eigenvalues in (rt1r,rt1i) and (rt2r,rt2i).
rt1r = aa
rt2r = dd
if cc != 0 {
rt1i = math.Sqrt(math.Abs(bb)) * math.Sqrt(math.Abs(cc))
rt2i = -rt1i
}
return
}