81 lines
2.1 KiB
Go
81 lines
2.1 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gonum
|
|
|
|
import (
|
|
"gonum.org/v1/gonum/blas"
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
)
|
|
|
|
// Dpotrf computes the Cholesky decomposition of the symmetric positive definite
|
|
// matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix,
|
|
// and a = U^T U is stored in place into a. If ul == blas.Lower, then a = L L^T
|
|
// is computed and stored in-place into a. If a is not positive definite, false
|
|
// is returned. This is the blocked version of the algorithm.
|
|
func (impl Implementation) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool) {
|
|
switch {
|
|
case ul != blas.Upper && ul != blas.Lower:
|
|
panic(badUplo)
|
|
case n < 0:
|
|
panic(nLT0)
|
|
case lda < max(1, n):
|
|
panic(badLdA)
|
|
}
|
|
|
|
// Quick return if possible.
|
|
if n == 0 {
|
|
return true
|
|
}
|
|
|
|
if len(a) < (n-1)*lda+n {
|
|
panic(shortA)
|
|
}
|
|
|
|
nb := impl.Ilaenv(1, "DPOTRF", string(ul), n, -1, -1, -1)
|
|
if nb <= 1 || n <= nb {
|
|
return impl.Dpotf2(ul, n, a, lda)
|
|
}
|
|
bi := blas64.Implementation()
|
|
if ul == blas.Upper {
|
|
for j := 0; j < n; j += nb {
|
|
jb := min(nb, n-j)
|
|
bi.Dsyrk(blas.Upper, blas.Trans, jb, j,
|
|
-1, a[j:], lda,
|
|
1, a[j*lda+j:], lda)
|
|
ok = impl.Dpotf2(blas.Upper, jb, a[j*lda+j:], lda)
|
|
if !ok {
|
|
return ok
|
|
}
|
|
if j+jb < n {
|
|
bi.Dgemm(blas.Trans, blas.NoTrans, jb, n-j-jb, j,
|
|
-1, a[j:], lda, a[j+jb:], lda,
|
|
1, a[j*lda+j+jb:], lda)
|
|
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, jb, n-j-jb,
|
|
1, a[j*lda+j:], lda,
|
|
a[j*lda+j+jb:], lda)
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
for j := 0; j < n; j += nb {
|
|
jb := min(nb, n-j)
|
|
bi.Dsyrk(blas.Lower, blas.NoTrans, jb, j,
|
|
-1, a[j*lda:], lda,
|
|
1, a[j*lda+j:], lda)
|
|
ok := impl.Dpotf2(blas.Lower, jb, a[j*lda+j:], lda)
|
|
if !ok {
|
|
return ok
|
|
}
|
|
if j+jb < n {
|
|
bi.Dgemm(blas.NoTrans, blas.Trans, n-j-jb, jb, j,
|
|
-1, a[(j+jb)*lda:], lda, a[j*lda:], lda,
|
|
1, a[(j+jb)*lda+j:], lda)
|
|
bi.Dtrsm(blas.Right, blas.Lower, blas.Trans, blas.NonUnit, n-j-jb, jb,
|
|
1, a[j*lda+j:], lda,
|
|
a[(j+jb)*lda+j:], lda)
|
|
}
|
|
}
|
|
return true
|
|
}
|