62 lines
1.9 KiB
Go
62 lines
1.9 KiB
Go
// Copyright ©2018 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import (
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
// Dpotrs solves a system of n linear equations A*X = B where A is an n×n
|
||
// symmetric positive definite matrix and B is an n×nrhs matrix. The matrix A is
|
||
// represented by its Cholesky factorization
|
||
// A = U^T*U if uplo == blas.Upper
|
||
// A = L*L^T if uplo == blas.Lower
|
||
// as computed by Dpotrf. On entry, B contains the right-hand side matrix B, on
|
||
// return it contains the solution matrix X.
|
||
func (Implementation) Dpotrs(uplo blas.Uplo, n, nrhs int, a []float64, lda int, b []float64, ldb int) {
|
||
switch {
|
||
case uplo != blas.Upper && uplo != blas.Lower:
|
||
panic(badUplo)
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case nrhs < 0:
|
||
panic(nrhsLT0)
|
||
case lda < max(1, n):
|
||
panic(badLdA)
|
||
case ldb < max(1, nrhs):
|
||
panic(badLdB)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if n == 0 || nrhs == 0 {
|
||
return
|
||
}
|
||
|
||
switch {
|
||
case len(a) < (n-1)*lda+n:
|
||
panic(shortA)
|
||
case len(b) < (n-1)*ldb+nrhs:
|
||
panic(shortB)
|
||
}
|
||
|
||
bi := blas64.Implementation()
|
||
|
||
if uplo == blas.Upper {
|
||
// Solve U^T * U * X = B where U is stored in the upper triangle of A.
|
||
|
||
// Solve U^T * X = B, overwriting B with X.
|
||
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, n, nrhs, 1, a, lda, b, ldb)
|
||
// Solve U * X = B, overwriting B with X.
|
||
bi.Dtrsm(blas.Left, blas.Upper, blas.NoTrans, blas.NonUnit, n, nrhs, 1, a, lda, b, ldb)
|
||
} else {
|
||
// Solve L * L^T * X = B where L is stored in the lower triangle of A.
|
||
|
||
// Solve L * X = B, overwriting B with X.
|
||
bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.NonUnit, n, nrhs, 1, a, lda, b, ldb)
|
||
// Solve L^T * X = B, overwriting B with X.
|
||
bi.Dtrsm(blas.Left, blas.Lower, blas.Trans, blas.NonUnit, n, nrhs, 1, a, lda, b, ldb)
|
||
}
|
||
}
|