Spring Pet Clinic: Class UML Diagram

Description

The UML Class Diagram illustrates the entities and their relationships within the Spring Pet Clinic applications, also helps readers visualize the layout of the classes.

Purpose

This UML Class Diagram is included to provide a visual representation of the entities and their relationships within the Spring Petclinic application, enhancing understanding of its data structure

Outcomes

* The UML Class diagram provides a clear, visual representation of the application's underlying data structure.
* The diagram serves as reference point of data models for both technical and non-technical stakeholders.

* Developers who open the diagram for the first time will get to understand what to expect once they open or maintain the spring pet clinic.

* The diagram can serve as reference for database design & support

Classes

1. BaseEntity 7. Pet

2. NamedEntity 8. PetType

3. Person 9. PetTypeFormatter
4. Visit 10. PetValidator

5. Speciality 11. Vets

6. Owner 12. Vet

The UML class diagram is shown below:

- id: Integer

+ getld(): Integer

Y

+ setld(Integer): void

+ isNew(): boolean

- date: LocalDate - name: String

- description: String + getName(): String

+ getDate(): LocalDate + setName(String): void

A

+ setDate(LocalDate): void

+ getDescription(): String

+ setDescription(String): void

- firstName: String

- lastName: String

+ getFirstName (): String

Y

+ setFirstName(String): void
+ getLastName(): String

+ setLastName(String): void

- specialities: Set<Speciality> - address: String

+ getSpecialitiesInternal(): Set<Speciality> - city: String

- . List<Pet>
+ getSpecialities(): List<Speciality> pets: List<Pet

+ getNrOfSpecialities(): int - telephone: String

- birthDate: type
- type: PetType

- visits: Set<Visit>

+ setBirthDate(LocalDate): type
+ getBirthDate(): LocalDate

+ setType(PetType): void

+ getType(): PetType

+ getVisits(): Collection<Visit>

+ addVisits(Visit): void

validates & formats:

- REQUIRED: String

+ addSpeciality(Speciality): void + getAddress(): String

+ setAddress(String): void
+ getCity(): String
+ setCity(): String

+ setTelephone(): String

- vets: List<Vet> + getPets(): List<Pet>

) ) + addPet(Pet): void
+ getVetList(): List<Vet>

+ addPet(Pet): void

+ getPet(String): Pet

+ getPet(Integer): Pet

+ getPet(String, boolean): Pet
+ addVisit(Integer, Visit): void

+ toString(): String

+ validate(Object,Errors): void

+ supports(Class<?>): boolean

- owners: OwnerRepository

+ print(PetType, Locale): String

+ parse(String, Locale): PetType




Spring Pet Clinic: Layered Architecture Diagram

Description
This diagram breaks down Spring Petclinic's layered architecture, providing a visual overview of the application's layers and their respective components.
Purpose

This layered architecture diagram is included to help the reader learn how the Spring Petclinic application is organized in layers, and to better understand the relationships between its
Layers documented:

1. Presentation Layer : Handles user HTTP requests through controllers such as OwnerController,PetController,VetController, etc.
2. Data Access Layer : Handles communication with the database, it uses Spring Data JPA repositories.

3. Domain Model Layer : Contains the core business logic and data. it includes entities like Owner, Pet, Vet . it serves as a model for real world business objects.
4. BaseEntity Hierarchy: Provides a common base(from BaseEntity) for entities.

5. Infrastructure : Shows supporting technical components, includes but not limited to Spring Boot, H2/MySQL/HSqldb databases, Thymeleaf, and Spring MVC.

The Layered Architecture Diagram is shown below:

PRESENTATION LAYER

OwnerController
(owner/*)

PetController

VetController

WelcomeController

CrashController

(pet/*) (vet/”) () (/oups)
DATA ACCESS'LAYER
OwnerRepository VetRepository
JpaRepository JpaRepository
o DOMAIN MODEL LAYER
Owner Pet PetType Visit Vet Speciality
@Entity extends @Entity extends @Entity extends @Entity extends @Entity extends @Entity extends
BaseEntity BaseEntity BaseEntity BaseEntity BaseEntity BaseEntity
has a has a:
has a:
has a has a

BaseEntity NamedEntity

Springboot
Application

H2/MySQL/HQSLDB
Databases

Thymeleaf

Spring Data JPA Ul Templates

Spring MVC

Spring Pet Clinic github

Repository: spring-projects/spring-petclinic: A sample Spring-based application



https://github.com/spring-projects/spring-petclinic

