This commit is contained in:
lamya1baidouri 2025-02-03 20:10:43 +01:00
parent 70d389f67d
commit f5d2b0b0aa

View file

@ -46,15 +46,11 @@ jobs:
# Installation des packages nécessaires
sudo apt-get update
sudo apt-get install -y powerstat linux-tools-common linux-tools-generic python3-pip
sudo apt-get install -y linux-tools-common linux-tools-generic python3-pip python3-psutil
# Installation de PowerAPI et pandas
pip3 install powerapi pandas
# Vérifier les installations
python3 --version
pip3 list | grep powerapi
pip3 list | grep pandas
# Installation de PowerAPI et dépendances
pip3 install powerapi==0.9.0 pandas numpy
sudo powerapi --formula rapl
- name: Cache Maven packages
uses: actions/cache@v3
@ -63,6 +59,13 @@ jobs:
key: ${{ runner.os }}-m2-${{ hashFiles('**/pom.xml') }}
restore-keys: ${{ runner.os }}-m2
- name: Start PowerAPI monitoring
id: start-powerapi
run: |
# Démarrer le daemon PowerAPI
sudo powerapi daemon start --formula rapl
echo "POWERAPI_PID=$(pgrep -f powerapi)" >> $GITHUB_ENV
- name: Start monitoring
id: start-monitoring
run: |
@ -98,6 +101,10 @@ jobs:
start_time=$(date +%s%N)
# Démarrer la mesure PowerAPI
sudo powerapi monitor record --formula rapl --pid $$ --output metrics/power/build_power.csv &
POWER_MONITOR_PID=$!
# Collecter les métriques avant build
free -m > metrics/system/pre_build_memory.txt
@ -110,6 +117,9 @@ jobs:
build_status=$?
end_time=$(date +%s%N)
# Arrêter la mesure PowerAPI
kill $POWER_MONITOR_PID
# Collecter les métriques post-build
free -m > metrics/system/post_build_memory.txt
@ -128,6 +138,10 @@ jobs:
start_time=$(date +%s%N)
# Démarrer la mesure PowerAPI
sudo powerapi monitor record --formula rapl --pid $$ --output metrics/power/test_power.csv &
POWER_MONITOR_PID=$!
# Collecter les métriques pré-tests
free -m > metrics/system/pre_test_memory.txt
@ -137,6 +151,9 @@ jobs:
test_status=$?
end_time=$(date +%s%N)
# Arrêter la mesure PowerAPI
kill $POWER_MONITOR_PID
# Collecter les métriques post-tests
free -m > metrics/system/post_test_memory.txt
@ -155,6 +172,10 @@ jobs:
start_time=$(date +%s%N)
# Démarrer la mesure PowerAPI
sudo powerapi monitor record --formula rapl --pid $$ --output metrics/power/docker_power.csv &
POWER_MONITOR_PID=$!
# Collecter les métriques pré-docker
free -m > metrics/system/pre_docker_memory.txt
df -h > metrics/system/pre_docker_disk.txt
@ -165,6 +186,9 @@ jobs:
build_status=$?
end_time=$(date +%s%N)
# Arrêter la mesure PowerAPI
kill $POWER_MONITOR_PID
# Collecter les métriques post-docker
free -m > metrics/system/post_docker_memory.txt
df -h > metrics/system/post_docker_disk.txt
@ -185,53 +209,84 @@ jobs:
# Collecter les métriques système finales
echo "=== Final System Resources ===" > metrics/system/final_metrics.txt
top -b -n 1 >> metrics/system/final_metrics.txt || echo "Failed to collect top metrics"
top -b -n 1 >> metrics/system/final_metrics.txt
echo "=== Final Memory Usage ===" > metrics/system/final_memory.txt
free -m >> metrics/system/final_memory.txt || echo "Failed to collect memory metrics"
free -m >> metrics/system/final_memory.txt
echo "=== Final Disk Usage ===" > metrics/system/final_disk.txt
df -h >> metrics/system/final_disk.txt || echo "Failed to collect disk metrics"
df -h >> metrics/system/final_disk.txt
# Marquer la fin du pipeline
date +%s%N > metrics/pipeline_end_time.txt
# Analyser les temps d'exécution
python3 << EOF
import pandas as pd
import glob
import os
def analyze_power_metrics():
power_files = glob.glob('metrics/power/*.csv')
if not power_files:
print("No power metrics found")
return
def read_time_file(filename):
try:
with open(filename, 'r') as f:
return float(f.read().strip())
except:
return 0
power_data = []
for file in power_files:
stage = os.path.basename(file).replace('_power.csv', '')
try:
df = pd.read_csv(file)
stats = {
'stage': stage,
'avg_power': df['power'].mean(),
'max_power': df['power'].max(),
'total_energy': df['power'].sum() * df['power'].count() * 0.1,
'duration': len(df) * 0.1
}
power_data.append(stats)
except Exception as e:
print(f"Error processing {file}: {e}")
# Collecter les temps
times = {
'build': read_time_file('metrics/performance/build_time.txt'),
'test': read_time_file('metrics/performance/test_time.txt'),
'docker': read_time_file('metrics/performance/docker_time.txt')
}
if power_data:
power_df = pd.DataFrame(power_data)
power_df.to_csv('metrics/power/power_analysis.csv', index=False)
# Créer le rapport de performance
with open('metrics/performance/summary.txt', 'w') as f:
f.write("Pipeline Performance Summary\n")
f.write("==========================\n\n")
with open('metrics/power/power_summary.txt', 'w') as f:
f.write("Energy Consumption Summary\n")
f.write("=========================\n\n")
for _, row in power_df.iterrows():
f.write(f"Stage: {row['stage']}\n")
f.write(f"Average Power: {row['avg_power']:.2f} W\n")
f.write(f"Maximum Power: {row['max_power']:.2f} W\n")
f.write(f"Total Energy: {row['total_energy']:.2f} J\n")
f.write(f"Duration: {row['duration']:.2f} s\n\n")
def analyze_times():
times = {
'build': float(open('metrics/performance/build_time.txt').read().strip()),
'test': float(open('metrics/performance/test_time.txt').read().strip()),
'docker': float(open('metrics/performance/docker_time.txt').read().strip())
}
total_time = sum(times.values())
for stage, duration in times.items():
percentage = (duration / total_time * 100) if total_time > 0 else 0
f.write(f"{stage.capitalize()} Stage:\n")
f.write(f"Duration: {duration/1000:.2f} seconds\n")
f.write(f"Percentage of total time: {percentage:.1f}%\n\n")
with open('metrics/performance/summary.txt', 'w') as f:
f.write("Pipeline Performance Summary\n")
f.write("==========================\n\n")
f.write(f"Total Pipeline Duration: {total_time/1000:.2f} seconds\n")
for stage, duration in times.items():
percentage = (duration / total_time * 100)
f.write(f"{stage.capitalize()} Stage:\n")
f.write(f"Duration: {duration/1000:.2f} seconds\n")
f.write(f"Percentage of total time: {percentage:.1f}%\n\n")
# Créer un CSV avec les métriques
pd.DataFrame([times]).to_csv('metrics/performance/times.csv', index=False)
f.write(f"Total Pipeline Duration: {total_time/1000:.2f} seconds\n")
pd.DataFrame([times]).to_csv('metrics/performance/times.csv', index=False)
analyze_power_metrics()
analyze_times()
EOF
- name: Export metrics to Prometheus
@ -274,5 +329,10 @@ jobs:
- name: Cleanup
if: always()
run: |
# Arrêter PowerAPI
if [ -n "$POWERAPI_PID" ]; then
sudo powerapi daemon stop
fi
docker system prune -af
rm -rf node_exporter*